These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 37676237)

  • 1. Effect of the effective refractive index on the radiative decay rate in nanoparticle thin films.
    Romero M; Sánchez-Valencia JR; Lozano G; Míguez H
    Nanoscale; 2023 Sep; 15(37):15279-15287. PubMed ID: 37676237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals.
    Senden T; Rabouw FT; Meijerink A
    ACS Nano; 2015 Feb; 9(2):1801-8. PubMed ID: 25584627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method to determine radiative and non-radiative defects applied to AgInS
    Chevallier T; Benayad A; Le Blevennec G; Chandezon F
    Phys Chem Chem Phys; 2017 Jan; 19(3):2359-2363. PubMed ID: 28054682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.
    Sangghaleh F; Sychugov I; Yang Z; Veinot JG; Linnros J
    ACS Nano; 2015 Jul; 9(7):7097-104. PubMed ID: 26083194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of electric and magnetic dipole transition of rare-earth-doped thin films tailored by high-index dielectric nanostructures.
    Wiecha PR; Majorel C; Girard C; Arbouet A; Masenelli B; Boisron O; Lecestre A; Larrieu G; Paillard V; Cuche A
    Appl Opt; 2019 Mar; 58(7):1682-1690. PubMed ID: 30874199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral selectivity of multiple nanoparticles doped thin films.
    Liu X; Tian Y; Ghanekar A; Zheng Y
    Opt Express; 2019 Sep; 27(20):A1591-A1600. PubMed ID: 31684563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission.
    Bolla G; Liao Q; Amirjalayer S; Tu Z; Lv S; Liu J; Zhang S; Zhen Y; Yi Y; Liu X; Fu H; Fuchs H; Dong H; Wang Z; Hu W
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):281-289. PubMed ID: 32697379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ion doping with donor and acceptor impurities on intensity and lifetime of photoluminescence from SiO2 films with silicon quantum dots.
    Mikhaylov AN; Tetelbaum DI; Burdov VA; Gorshkov ON; Belov AI; Kambarov DA; Belyakov VA; Vasiliev VK; Kovalev AI; Gaponova DM
    J Nanosci Nanotechnol; 2008 Feb; 8(2):780-8. PubMed ID: 18464406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures.
    Mladenovski S; Reineke S; Neyts K
    Opt Lett; 2009 May; 34(9):1375-7. PubMed ID: 19412277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative and Nonradiative Recombination in CuInS2 Nanocrystals and CuInS2-Based Core/Shell Nanocrystals.
    Berends AC; Rabouw FT; Spoor FC; Bladt E; Grozema FC; Houtepen AJ; Siebbeles LD; de Mello Donegá C
    J Phys Chem Lett; 2016 Sep; 7(17):3503-9. PubMed ID: 27552674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States.
    Karedla N; Enderlein J; Gregor I; Chizhik AI
    J Phys Chem Lett; 2014 Apr; 5(7):1198-202. PubMed ID: 26274471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities.
    Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L
    Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of Er
    Normani S; Louvet G; Baudet E; Bouška M; Gutwirth J; Starecki F; Doualan JL; Ledemi Y; Messaddeq Y; Adam JL; Němec P; Nazabal V
    Sci Rep; 2020 May; 10(1):7997. PubMed ID: 32409661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.
    Yang Y; Zhen B; Hsu CW; Miller OD; Joannopoulos JD; Soljačić M
    Nano Lett; 2016 Jul; 16(7):4110-7. PubMed ID: 27244596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene.
    Mohanty J; Nau WM
    Photochem Photobiol Sci; 2004; 3(11-12):1026-31. PubMed ID: 15570390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the Exciton Radiative Lifetime in van der Waals Heterostructures.
    Fang HH; Han B; Robert C; Semina MA; Lagarde D; Courtade E; Taniguchi T; Watanabe K; Amand T; Urbaszek B; Glazov MM; Marie X
    Phys Rev Lett; 2019 Aug; 123(6):067401. PubMed ID: 31491178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of Volume Ratio in Photonic Effects of Lanthanide-Doped LaPO
    Luo Y; Li L; Wong HT; Wong KL; Tanner PA
    Small; 2020 Jan; 16(1):e1905234. PubMed ID: 31797530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Transparent Nanophosphor Films for Tunable White-Light-Emitting Layered Coatings.
    Geng D; Lozano G; Míguez H
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4219-4225. PubMed ID: 30576105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphonon relaxation in rare-earth doped fluorozirconate-based glasses containing BaCl2 nanocrystals.
    Pfau C; Skrzypczak U; Ahrens B; Schweizer S
    J Phys Condens Matter; 2014 Jan; 26(2):025406. PubMed ID: 24334404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the Net Radiative Recombination Rate in Lead Halide Perovskite Films by Modification of Light Outcoupling.
    Staub F; Kirchartz T; Bittkau K; Rau U
    J Phys Chem Lett; 2017 Oct; 8(20):5084-5090. PubMed ID: 28976758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.