These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37676243)
1. Simulating the Voltage-Dependent Fluorescence of Di-8-ANEPPS in a Lipid Membrane. Youngworth R; Roux B J Phys Chem Lett; 2023 Sep; 14(36):8268-8276. PubMed ID: 37676243 [TBL] [Abstract][Full Text] [Related]
2. Simulating the Fluorescence of Di-8-ANEPPS in Solvents of Different Polarity. Youngworth R; Roux B J Phys Chem B; 2024 Jan; 128(1):184-192. PubMed ID: 38113410 [TBL] [Abstract][Full Text] [Related]
3. Spectral properties and orientation of voltage-sensitive dyes in lipid membranes. Matson M; Carlsson N; Beke-Somfai T; Nordén B Langmuir; 2012 Jul; 28(29):10808-17. PubMed ID: 22738247 [TBL] [Abstract][Full Text] [Related]
5. Measuring the induced membrane voltage with Di-8-ANEPPS. Pucihar G; Kotnik T; Miklavcic D J Vis Exp; 2009 Nov; (33):. PubMed ID: 19927116 [TBL] [Abstract][Full Text] [Related]
6. Characterization of di-4-ANEPPS with nano-black lipid membranes. Tsemperouli M; Sugihara K Nanoscale; 2018 Jan; 10(3):1090-1098. PubMed ID: 29271448 [TBL] [Abstract][Full Text] [Related]
7. Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study: characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane probes. Bastos AE; Marinho HS; Cordeiro AM; de Soure AM; de Almeida RF Chem Phys Lipids; 2012 Jul; 165(5):577-88. PubMed ID: 22705749 [TBL] [Abstract][Full Text] [Related]
9. Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential. Vitha MF; Clarke RJ Biochim Biophys Acta; 2007 Jan; 1768(1):107-14. PubMed ID: 16904627 [TBL] [Abstract][Full Text] [Related]
10. Stimulatory actions of di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS), voltage-sensitive dye, on the BKCa channel in pituitary tumor (GH3) cells. Wu SN; Lin MW; Wang YJ Pflugers Arch; 2008 Jan; 455(4):687-99. PubMed ID: 17701422 [TBL] [Abstract][Full Text] [Related]
11. Measurement of membrane potential and [Ca2+]i in cell ensembles: application to the study of glutamate taste in mice. Hayashi Y; Zviman MM; Brand JG; Teeter JH; Restrepo D Biophys J; 1996 Aug; 71(2):1057-70. PubMed ID: 8842242 [TBL] [Abstract][Full Text] [Related]
17. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Clarke RJ; Kane DJ Biochim Biophys Acta; 1997 Jan; 1323(2):223-39. PubMed ID: 9042345 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system. Habib-E-Rasul Mullah S; Komuro R; Yan P; Hayashi S; Inaji M; Momose-Sato Y; Loew LM; Sato K J Membr Biol; 2013 Sep; 246(9):679-88. PubMed ID: 23975337 [TBL] [Abstract][Full Text] [Related]
19. [An optical mapping system based on spectral shift of voltage-sensitive dyes]. Wang J; Zhang ZX; Xu ZH; Jin YS; Ji XL; Jin YB Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):617-20. PubMed ID: 18536426 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. Grandy TH; Greenfield SA; Devonshire IM J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]