These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37676458)

  • 1. Influence of partial cement substitution by ground blast furnace slag on the mechanical properties of phosphogypsum cemented backfill.
    Chen G; Yao N; Ye Y; Fu F; Hu N; Zhang Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102972-102985. PubMed ID: 37676458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Cemented Oil Shale Residue-Steel Slag-Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact.
    Li X; Li K; Sun Q; Liu L; Yang J; Xue H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-part alkali-activated slag binder for cemented fine tailings backfill: proportion optimization and properties evaluation.
    Zhu G; Zhu W; Qi Z; Yan B; Jiang H; Hou C
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):73865-73877. PubMed ID: 35622284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment.
    Chen Q; Sun S; Wang Y; Zhang Q; Zhu L; Liu Y
    Chemosphere; 2023 Feb; 313():137412. PubMed ID: 36455381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on mechanical properties and damage characteristics of cemented waste rock-tailing backfill.
    Chen G; Yao N; Ye Y; Fu F; Hu N; Zhang Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102181-102197. PubMed ID: 37659021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill.
    Chen Q; Zhang Q; Fourie A; Xin C
    J Environ Manage; 2017 Oct; 201():19-27. PubMed ID: 28633078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Cemented Filling Materials Prepared from Phosphogypsum-Steel Slag-Blast-Furnace Slag and Its Environmental Effect.
    Li K; Zhu L; Wu Z; Wang X
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and performance of composite activated slag-based binder for cemented paste backfill.
    Yang F; Wu F; Yang B; Li L; Gao Q
    Chemosphere; 2022 Dec; 309(Pt 1):136649. PubMed ID: 36181840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Effects of Refining Slag on Properties and Hydration of Cemented Solid Waste-Based Backfill.
    Tang C; Mu X; Ni W; Xu D; Li K
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced solidification/stabilization (S/S) of fluoride in smelting solid waste-based phosphogypsum cemented paste backfill utilizing biochar: Mechanisms and performance assessment.
    Wang D; Tao Y; Feng Y; Zhu D; Zhang Q; Chen Q
    J Environ Manage; 2024 Sep; 367():122088. PubMed ID: 39116765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength development and self-desiccation of saline cemented paste backfill.
    Carnogursky EA; Fall M; Haruna S
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14894-14911. PubMed ID: 38286929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium Slag and Solid Waste-Based Binders for Cemented Lithium Mica Fine Tailings Backfill.
    Li J; Huang J; Hu Y; Zhu D
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill.
    Zhang F; Li Y; Zhang J; Gui X; Zhu X; Zhao C
    Heliyon; 2022 Sep; 8(9):e10695. PubMed ID: 36164537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Iron Tailings for Phosphate Removal in Cemented Phosphogypsum (PG) Backfill.
    Shi Y; Wang X; Qing Z; Song Y; Min J; Zhou Y; Du J; Wang S
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and strength formation mechanism of alkali-stimulated spontaneous combustion gangue-granulated blast furnace slag backfill.
    Ma R; Wang G; Sun Q
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):723-739. PubMed ID: 38017215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Fluoride Pollution in Cemented Phosphogypsum Backfill by Citric Acid Pretreatment.
    Zhou Y; Shi Y; Zhu Q
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reuse of phosphogypsum pretreated with water washing as aggregate for cemented backfill.
    Zhou Y; Li X; Shi Y; Zhu Q; Du J
    Sci Rep; 2022 Sep; 12(1):16091. PubMed ID: 36167716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water.
    Park H; Jeong Y; Jeong JH; Oh JE
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-treatment of steel slag and oil shale waste in cemented paste backfill: Evaluation of fresh properties, microstructure, and heavy metals immobilization.
    Chang Y; Zhiyun Z; Dengfeng Z; Di Z; Liguo X
    J Environ Manage; 2024 Jan; 349():119406. PubMed ID: 37890302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical properties and sustainability of phosphogypsum-slag binder activated by nano-ettringite.
    Wang J; Deng X; Tan H; Guo H; Zhang J; Li M; Chen P; He X; Yang J; Jian S; Yang Z
    Sci Total Environ; 2023 Dec; 903():166015. PubMed ID: 37579808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.