These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37676519)

  • 1. Plant viruses as probes to engineer tolerance to abiotic stress in crops.
    Aguilar E; Lozano-Duran R
    Stress Biol; 2022 Apr; 2(1):20. PubMed ID: 37676519
    [No Abstract]   [Full Text] [Related]  

  • 2. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops.
    Villalobos-López MA; Arroyo-Becerra A; Quintero-Jiménez A; Iturriaga G
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs.
    Chen S; Zhang N; Zhou G; Hussain S; Ahmed S; Tian H; Wang S
    BMC Plant Biol; 2021 Mar; 21(1):137. PubMed ID: 33726681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants.
    Melvin P; Bankapalli K; D'Silva P; Shivaprasad PV
    Plant Mol Biol; 2017 Jul; 94(4-5):381-397. PubMed ID: 28444544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review.
    Parmar N; Singh KH; Sharma D; Singh L; Kumar P; Nanjundan J; Khan YJ; Chauhan DK; Thakur AK
    3 Biotech; 2017 Aug; 7(4):239. PubMed ID: 28702937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress.
    Chen S; Zhao CB; Ren RM; Jiang JH
    Front Plant Sci; 2023; 14():1141918. PubMed ID: 36875563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miRNAs: Major modulators for crop growth and development under abiotic stresses.
    Noman A; Fahad S; Aqeel M; Ali U; Amanullah ; Anwar S; Baloch SK; Zainab M
    Biotechnol Lett; 2017 May; 39(5):685-700. PubMed ID: 28238061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAC transcription factors in plant abiotic stress responses.
    Nakashima K; Takasaki H; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K
    Biochim Biophys Acta; 2012 Feb; 1819(2):97-103. PubMed ID: 22037288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches.
    Sinha R; Bala M; Kumar M; Sharma TR; Singh AK
    Methods Mol Biol; 2020; 2107():277-303. PubMed ID: 31893454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology.
    Wang H; Wang H; Shao H; Tang X
    Front Plant Sci; 2016; 7():67. PubMed ID: 26904044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant salt-tolerance mechanisms.
    Deinlein U; Stephan AB; Horie T; Luo W; Xu G; Schroeder JI
    Trends Plant Sci; 2014 Jun; 19(6):371-9. PubMed ID: 24630845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of abiotic stress tolerance in crops.
    Roy SJ; Tucker EJ; Tester M
    Curr Opin Plant Biol; 2011 Jun; 14(3):232-9. PubMed ID: 21478049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops.
    Zheng Y; Wang X; Cui X; Wang K; Wang Y; He Y
    Front Plant Sci; 2022; 13():1095363. PubMed ID: 36684767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture.
    Kaur S; Tiwari V; Kumari A; Chaudhary E; Sharma A; Ali U; Garg M
    J Biotechnol; 2023 Jan; 361():12-29. PubMed ID: 36414125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Priming crops for the future: rewiring stress memory.
    Liu H; Able AJ; Able JA
    Trends Plant Sci; 2022 Jul; 27(7):699-716. PubMed ID: 34906381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.
    Khan SA; Li MZ; Wang SM; Yin HJ
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.