These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 37676607)

  • 1. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence.
    Aguilera-Puga MDC; Cancelarich NL; Marani MM; de la Fuente-Nunez C; Plisson F
    Methods Mol Biol; 2024; 2714():329-352. PubMed ID: 37676607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating antibiotic discovery through artificial intelligence.
    Melo MCR; Maasch JRMA; de la Fuente-Nunez C
    Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.
    Goles M; Daza A; Cabas-Mora G; Sarmiento-Varón L; Sepúlveda-Yañez J; Anvari-Kazemabad H; Davari MD; Uribe-Paredes R; Olivera-Nappa Á; Navarrete MA; Medina-Ortiz D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-CGAN: Deep Generative Model-Based Multiproperty Antimicrobial Peptide Design.
    Yu H; Wang R; Qiao J; Wei L
    J Chem Inf Model; 2024 Jan; 64(1):316-326. PubMed ID: 38135439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning assisted rational design of antimicrobial peptides based on human endogenous proteins and their applications for cosmetic preservative system optimization.
    Yue L; Song L; Zhu S; Fu X; Li X; He C; Li J
    Sci Rep; 2024 Jan; 14(1):947. PubMed ID: 38200054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular
    Lin E; Lin CH; Lane HY
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence-driven antimicrobial peptide discovery.
    Szymczak P; Szczurek E
    Curr Opin Struct Biol; 2023 Dec; 83():102733. PubMed ID: 37992451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New avenues in artificial-intelligence-assisted drug discovery.
    Cerchia C; Lavecchia A
    Drug Discov Today; 2023 Apr; 28(4):103516. PubMed ID: 36736583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides: An alternative to traditional antibiotics.
    Ji S; An F; Zhang T; Lou M; Guo J; Liu K; Zhu Y; Wu J; Wu R
    Eur J Med Chem; 2024 Feb; 265():116072. PubMed ID: 38147812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.
    Zhang L; Tan J; Han D; Zhu H
    Drug Discov Today; 2017 Nov; 22(11):1680-1685. PubMed ID: 28881183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors.
    Shiammala PN; Duraimutharasan NKB; Vaseeharan B; Alothaim AS; Al-Malki ES; Snekaa B; Safi SZ; Singh SK; Velmurugan D; Selvaraj C
    Methods; 2023 Nov; 219():82-94. PubMed ID: 37778659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation.
    Narayanan H; Dingfelder F; Butté A; Lorenzen N; Sokolov M; Arosio P
    Trends Pharmacol Sci; 2021 Mar; 42(3):151-165. PubMed ID: 33500170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided structure-based ligand identification and design via artificial intelligence modeling.
    Di Filippo JI; Cavasotto CN
    Expert Opin Drug Discov; 2022 Jan; 17(1):71-78. PubMed ID: 34544293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Artificial Intelligence and Machine Learning in Drug Discovery.
    Gupta RR
    Methods Mol Biol; 2022; 2390():113-124. PubMed ID: 34731466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.
    Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C
    Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.