These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 37676800)
1. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
2. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
3. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
4. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
5. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot. Behidj A; Achiche S; Mohebbi A Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642 [TBL] [Abstract][Full Text] [Related]
6. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
7. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
8. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation. Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145 [TBL] [Abstract][Full Text] [Related]
9. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
10. A path planning method of 6-DOF robot for mirror therapy based on A* algorithm. Xu Z; Guo S; Zhang L Technol Health Care; 2022; 30(1):105-116. PubMed ID: 34024793 [TBL] [Abstract][Full Text] [Related]
11. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
12. [Research status of lower limb exoskeleton rehabilitation robot]. Li M; Li H; Yu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):833-839. PubMed ID: 39218611 [TBL] [Abstract][Full Text] [Related]
13. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
14. Research on Theory and a Performance Analysis of an Innovative Rehabilitation Robot. Wu J; Liu Y; Zhao J; Zang X; Guan Y Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632338 [TBL] [Abstract][Full Text] [Related]
15. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. Rosati G; Gallina P; Masiero S IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714 [TBL] [Abstract][Full Text] [Related]
16. Prototype development of bilateral arm mirror-like-robotic rehabilitation device for acute stroke patients. Klinkwan P; Kongmaroeng C; Muengtaweepongsa S; Limtrakarn W Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37116477 [TBL] [Abstract][Full Text] [Related]
17. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning. Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521 [TBL] [Abstract][Full Text] [Related]
18. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571 [TBL] [Abstract][Full Text] [Related]
19. Model based control of a rehabilitation robot for lower extremities. Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222 [TBL] [Abstract][Full Text] [Related]
20. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion. Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]