These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37676904)

  • 1. Adaptive spike threshold dynamics associated with sparse spiking of hilar mossy cells are captured by a simple model.
    Trinh AT; Girardi-Schappo M; Béïque JC; Longtin A; Maler L
    J Physiol; 2023 Oct; 601(19):4397-4422. PubMed ID: 37676904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition.
    Zucca S; Griguoli M; Malézieux M; Grosjean N; Carta M; Mulle C
    J Neurosci; 2017 Jan; 37(3):587-598. PubMed ID: 28100741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions.
    Hedrick TP; Nobis WP; Foote KM; Ishii T; Chetkovich DM; Swanson GT
    eNeuro; 2017; 4(6):. PubMed ID: 29214210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dentate Gyrus Mossy Cells Share a Role in Pattern Separation with Dentate Granule Cells and Proximal CA3 Pyramidal Cells.
    GoodSmith D; Lee H; Neunuebel JP; Song H; Knierim JJ
    J Neurosci; 2019 Nov; 39(48):9570-9584. PubMed ID: 31641051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation.
    Kim KR; Lee SY; Yoon SH; Kim Y; Jeong HJ; Lee S; Suh YH; Kang JS; Cho H; Lee SH; Kim MH; Ho WK
    J Neurosci; 2020 Mar; 40(11):2200-2214. PubMed ID: 32047055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus.
    Sun Y; Grieco SF; Holmes TC; Xu X
    eNeuro; 2017; 4(2):. PubMed ID: 28451637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus.
    Kim SY; Lim W
    Cogn Neurodyn; 2022 Dec; 16(6):1427-1447. PubMed ID: 36408073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern separation of spiketrains in hippocampal neurons.
    Madar AD; Ewell LA; Jones MV
    Sci Rep; 2019 Mar; 9(1):5282. PubMed ID: 30918288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition.
    Neubrandt M; Oláh VJ; Brunner J; Marosi EL; Soltesz I; Szabadics J
    J Neurosci; 2018 Feb; 38(7):1711-1724. PubMed ID: 29335356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach.
    Myers CE; Scharfman HE
    Hippocampus; 2009 Apr; 19(4):321-37. PubMed ID: 18958849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.
    Scharfman HE; Myers CE
    Neurobiol Learn Mem; 2016 Mar; 129():69-82. PubMed ID: 26391451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus.
    Kim SY; Lim W
    Phys Rev E; 2022 Jan; 105(1-1):014418. PubMed ID: 35193268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar "mossy" cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices.
    Scharfman HE
    J Neurosci; 1994 Oct; 14(10):6041-57. PubMed ID: 7931561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium permeable AMPA receptor-dependent long lasting plasticity of intrinsic excitability in fast spiking interneurons of the dentate gyrus decreases inhibition in the granule cell layer.
    Dasgupta D; Sikdar SK
    Hippocampus; 2015 Mar; 25(3):269-85. PubMed ID: 25252134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata.
    Lübke J; Frotscher M; Spruston N
    J Neurophysiol; 1998 Mar; 79(3):1518-34. PubMed ID: 9497429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats.
    Lynch M; Sayin U; Golarai G; Sutula T
    J Neurophysiol; 2000 Dec; 84(6):2868-79. PubMed ID: 11110816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels.
    Rizwan AP; Zhan X; Zamponi GW; Turner RW
    J Neurosci; 2016 Nov; 36(44):11196-11207. PubMed ID: 27807163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Local Circuit Connections to Hilar Mossy Cells in the Mouse Dentate Gyrus.
    Shi Y; Grieco SF; Holmes TC; Xu X
    eNeuro; 2019; 6(2):. PubMed ID: 30937358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus.
    GoodSmith D; Chen X; Wang C; Kim SH; Song H; Burgalossi A; Christian KM; Knierim JJ
    Neuron; 2017 Feb; 93(3):677-690.e5. PubMed ID: 28132828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.