These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37676919)

  • 1. Assessment and Prediction of Human Proteotypic Peptide Stability for Proteomics Quantification.
    Chiva C; Elhamraoui Z; Solé A; Serret M; Wilhelm M; Sabidó E
    Anal Chem; 2023 Sep; 95(37):13746-13749. PubMed ID: 37676919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.
    Qeli E; Omasits U; Goetze S; Stekhoven DJ; Frey JE; Basler K; Wollscheid B; Brunner E; Ahrens CH
    J Proteomics; 2014 Aug; 108():269-83. PubMed ID: 24878426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AP3: An Advanced Proteotypic Peptide Predictor for Targeted Proteomics by Incorporating Peptide Digestibility.
    Gao Z; Chang C; Yang J; Zhu Y; Fu Y
    Anal Chem; 2019 Jul; 91(13):8705-8711. PubMed ID: 31247716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.
    Dittrich J; Ceglarek U
    Methods Mol Biol; 2017; 1619():417-430. PubMed ID: 28674901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry.
    Dittrich J; Becker S; Hecht M; Ceglarek U
    Proteomics Clin Appl; 2015 Feb; 9(1-2):5-16. PubMed ID: 25418444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.
    Guo X; Trudgian DC; Lemoff A; Yadavalli S; Mirzaei H
    Mol Cell Proteomics; 2014 Jun; 13(6):1573-84. PubMed ID: 24696503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Targeted MRM Approach for Tempo-Spatial Proteomics Analyses.
    Moradian A; Porras-Yakushi TR; Sweredoski MJ; Hess S
    Methods Mol Biol; 2016; 1394():75-85. PubMed ID: 26700042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.
    Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X
    Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Typic: A Practical and Robust Tool to Rank Proteotypic Peptides for Targeted Proteomics.
    Pauletti BA; Granato DC; M Carnielli C; Câmara GA; Normando AGC; Telles GP; Leme AFP
    J Proteome Res; 2023 Feb; 22(2):539-545. PubMed ID: 36480281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2020; 2051():161-197. PubMed ID: 31552629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence Understands Peptide Observability and Assists With Absolute Protein Quantification.
    Zimmer D; Schneider K; Sommer F; Schroda M; Mühlhaus T
    Front Plant Sci; 2018; 9():1559. PubMed ID: 30483279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepMSPeptide: peptide detectability prediction using deep learning.
    Serrano G; Guruceaga E; Segura V
    Bioinformatics; 2020 Feb; 36(4):1279-1280. PubMed ID: 31529040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Preparation of Peptides for Mass Spectrometry Analysis in Bottom-Up Proteomics Workflows.
    Wojtkiewicz M; Berg Luecke L; Kelly MI; Gundry RL
    Curr Protoc; 2021 Mar; 1(3):e85. PubMed ID: 33750040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting peptide termini, a novel immunoaffinity approach to reduce complexity in mass spectrometric protein identification.
    Hoeppe S; Schreiber TD; Planatscher H; Zell A; Templin MF; Stoll D; Joos TO; Poetz O
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.002857. PubMed ID: 20962300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak Identification and Quantification by Proteomic Mass Spectrogram Decomposition.
    Taechawattananant P; Yoshii K; Ishihama Y
    J Proteome Res; 2021 May; 20(5):2291-2298. PubMed ID: 33661642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments.
    Matzke MM; Brown JN; Gritsenko MA; Metz TO; Pounds JG; Rodland KD; Shukla AK; Smith RD; Waters KM; McDermott JE; Webb-Robertson BJ
    Proteomics; 2013 Feb; 13(3-4):493-503. PubMed ID: 23019139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.