These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37677058)
1. Optimizing Crystallization in Wide-Bandgap Mixed Halide Perovskites for High-Efficiency Solar Cells. An Y; Zhang N; Zeng Z; Cai Y; Jiang W; Qi F; Ke L; Lin FR; Tsang SW; Shi T; Jen AK; Yip HL Adv Mater; 2024 Apr; 36(17):e2306568. PubMed ID: 37677058 [TBL] [Abstract][Full Text] [Related]
2. Suppressing Phase Segregation in Wide Bandgap Perovskites for Monolithic Perovskite/Organic Tandem Solar Cells with Reduced Voltage Loss. Wang C; Shao W; Liang J; Chen C; Hu X; Cui H; Liu C; Fang G; Tao C Small; 2022 Dec; 18(49):e2204081. PubMed ID: 36310130 [TBL] [Abstract][Full Text] [Related]
3. Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems. Guan H; Zhou S; Fu S; Pu D; Chen X; Ge Y; Wang S; Wang C; Cui H; Liang J; Hu X; Meng W; Fang G; Ke W Adv Mater; 2024 Jan; 36(1):e2307987. PubMed ID: 37956304 [TBL] [Abstract][Full Text] [Related]
4. Steric Engineering Enables Efficient and Photostable Wide-Bandgap Perovskites for All-Perovskite Tandem Solar Cells. Wen J; Zhao Y; Liu Z; Gao H; Lin R; Wan S; Ji C; Xiao K; Gao Y; Tian Y; Xie J; Brabec CJ; Tan H Adv Mater; 2022 Jul; 34(26):e2110356. PubMed ID: 35439839 [TBL] [Abstract][Full Text] [Related]
5. Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Yu Y; Liu R; Zhang F; Liu C; Wu Q; Zhang M; Yu H J Colloid Interface Sci; 2022 Jan; 605():710-717. PubMed ID: 34365307 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Wide Bandgap Perovskite Solar Cells: Focus on Lead-Free Materials for Tandem Structures. Jang WJ; Jang HW; Kim SY Small Methods; 2024 Feb; 8(2):e2300207. PubMed ID: 37203293 [TBL] [Abstract][Full Text] [Related]
7. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. Kim J; Saidaminov MI; Tan H; Zhao Y; Kim Y; Choi J; Jo JW; Fan J; Quintero-Bermudez R; Yang Z; Quan LN; Wei M; Voznyy O; Sargent EH Adv Mater; 2018 Mar; 30(13):e1706275. PubMed ID: 29441615 [TBL] [Abstract][Full Text] [Related]
8. Intermediate Phase Suppression with Long Chain Diammonium Alkane for High Performance Wide-Bandgap and Tandem Perovskite Solar Cells. Jia P; Chen G; Li G; Liang J; Guan H; Wang C; Pu D; Ge Y; Hu X; Cui H; Du S; Liang C; Liao J; Xing G; Ke W; Fang G Adv Mater; 2024 Jun; 36(25):e2400105. PubMed ID: 38452401 [TBL] [Abstract][Full Text] [Related]
9. Ligand Homogenized Br-I Wide-Bandgap Perovskites for Efficient NiO Zhang X; Ma Q; Wang Y; Zheng J; Liu Q; Liu L; Yang P; He W; Cao Y; Duan W; Ding K; Mai Y ACS Nano; 2024 Jun; 18(24):15991-16001. PubMed ID: 38829730 [TBL] [Abstract][Full Text] [Related]
10. Strain Regulation of Mixed-Halide Perovskites Enables High-Performance Wide-Bandgap Photovoltaics. Li X; Li Y; Feng Y; Qi J; Shen J; Shi G; Yang S; Yuan M; He T Adv Mater; 2024 Jun; 36(23):e2401103. PubMed ID: 38375740 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application. Nie T; Fang Z; Ren X; Duan Y; Liu SF Nanomicro Lett; 2023 Mar; 15(1):70. PubMed ID: 36943501 [TBL] [Abstract][Full Text] [Related]
12. Pure 2D Perovskite Formation by Interfacial Engineering Yields a High Open-Circuit Voltage beyond 1.28 V for 1.77-eV Wide-Bandgap Perovskite Solar Cells. He R; Yi Z; Luo Y; Luo J; Wei Q; Lai H; Huang H; Zou B; Cui G; Wang W; Xiao C; Ren S; Chen C; Wang C; Xing G; Fu F; Zhao D Adv Sci (Weinh); 2022 Dec; 9(36):e2203210. PubMed ID: 36372551 [TBL] [Abstract][Full Text] [Related]
14. Dually Modified Wide-Bandgap Perovskites by Phenylethylammonium Acetate toward Highly Efficient Solar Cells with Low Photovoltage Loss. Chen J; Wang D; Chen S; Hu H; Li Y; Huang Y; Zhang Z; Jiang Z; Xu J; Sun X; So SK; Peng Y; Wang X; Zhu X; Xu B ACS Appl Mater Interfaces; 2022 Sep; 14(38):43246-43256. PubMed ID: 36112025 [TBL] [Abstract][Full Text] [Related]
15. Additive engineering for efficient wide-bandgap perovskite solar cells with low open-circuit voltage losses. Yu X; He H; Hui Y; Wang H; Zhu X; Li S; Zhu T Front Chem; 2024; 12():1441057. PubMed ID: 39286002 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small V Zhou X; Zhang L; Wang X; Liu C; Chen S; Zhang M; Li X; Yi W; Xu B Adv Mater; 2020 Apr; 32(14):e1908107. PubMed ID: 32100401 [TBL] [Abstract][Full Text] [Related]
17. Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency. Yao Y; Hang P; Li B; Hu Z; Kan C; Xie J; Wang Y; Zhang Y; Yang D; Yu X Small; 2022 Sep; 18(38):e2203319. PubMed ID: 35896945 [TBL] [Abstract][Full Text] [Related]
18. Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26. Hu X; Li J; Wang C; Cui H; Liu Y; Zhou S; Guan H; Ke W; Tao C; Fang G Nanomicro Lett; 2023 Apr; 15(1):103. PubMed ID: 37058250 [TBL] [Abstract][Full Text] [Related]
19. Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution. Wang R; Liu X; Yan S; Meng N; Zhao X; Chen Y; Li H; Qaid SMH; Yang S; Yuan M; He T Nat Commun; 2024 Oct; 15(1):8899. PubMed ID: 39406749 [TBL] [Abstract][Full Text] [Related]
20. Highly Durable Inverted Inorganic Perovskite/Organic Tandem Solar Cells Enabled by Multifunctional Additives. Li Y; Yan Y; Fu Y; Jiang W; Liu M; Chen M; Huang X; Lu G; Lu X; Yin J; Wu S; Jen AK Angew Chem Int Ed Engl; 2024 Aug; ():e202412515. PubMed ID: 39155244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]