These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37677089)

  • 21. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO
    Lin SC; Chang CC; Chiu SY; Pai HT; Liao TY; Hsu CS; Chiang WH; Tsai MK; Chen HM
    Nat Commun; 2020 Jul; 11(1):3525. PubMed ID: 32665607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy.
    Boubnov A; Carvalho HW; Doronkin DE; Günter T; Gallo E; Atkins AJ; Jacob CR; Grunwaldt JD
    J Am Chem Soc; 2014 Sep; 136(37):13006-15. PubMed ID: 25105343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates.
    Cutsail GE; Blaesi EJ; Pollock CJ; Bollinger JM; Krebs C; DeBeer S
    J Inorg Biochem; 2020 Feb; 203():110877. PubMed ID: 31710865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO
    Wang X; de Araújo JF; Ju W; Bagger A; Schmies H; Kühl S; Rossmeisl J; Strasser P
    Nat Nanotechnol; 2019 Nov; 14(11):1063-1070. PubMed ID: 31591526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO
    Grosse P; Gao D; Scholten F; Sinev I; Mistry H; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2018 May; 57(21):6192-6197. PubMed ID: 29578622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incident-angle dependent
    Gunduz S; Deka DJ; Kim J; Wilson M; Warren M; Ozkan US
    RSC Adv; 2021 Feb; 11(12):6456-6463. PubMed ID: 35423210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO
    Okatenko V; Loiudice A; Newton MA; Stoian DC; Blokhina A; Chen AN; Rossi K; Buonsanti R
    J Am Chem Soc; 2023 Mar; 145(9):5370-5383. PubMed ID: 36847799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Operando Evolution of the Structure and Oxidation State of Size-Controlled Zn Nanoparticles during CO
    Jeon HS; Sinev I; Scholten F; Divins NJ; Zegkinoglou I; Pielsticker L; Cuenya BR
    J Am Chem Soc; 2018 Aug; 140(30):9383-9386. PubMed ID: 30008209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermediate Binding Control Using Metal-Organic Frameworks Enhances Electrochemical CO
    Nam DH; Shekhah O; Lee G; Mallick A; Jiang H; Li F; Chen B; Wicks J; Eddaoudi M; Sargent EH
    J Am Chem Soc; 2020 Dec; 142(51):21513-21521. PubMed ID: 33319985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroreduction of CO
    Karapinar D; Huan NT; Ranjbar Sahraie N; Li J; Wakerley D; Touati N; Zanna S; Taverna D; Galvão Tizei LH; Zitolo A; Jaouen F; Mougel V; Fontecave M
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15098-15103. PubMed ID: 31453650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential-Dependent Morphology of Copper Catalysts During CO
    Simon GH; Kley CS; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2561-2568. PubMed ID: 33035401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing CO
    Heidary N; Ly KH; Kornienko N
    Nano Lett; 2019 Aug; 19(8):4817-4826. PubMed ID: 31260630
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Timoshenko J; Roldan Cuenya B
    Chem Rev; 2021 Jan; 121(2):882-961. PubMed ID: 32986414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO₂.
    Hirsch O; Kvashnina KO; Luo L; Süess MJ; Glatzel P; Koziej D
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15803-8. PubMed ID: 26668362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur Changes the Electrochemical CO
    Liang S; Xiao J; Zhang T; Zheng Y; Wang Q; Liu B
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202310740. PubMed ID: 37703214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced x-ray spectroscopy of actinide trichlorides.
    Butorin SM
    J Chem Phys; 2021 Oct; 155(16):164103. PubMed ID: 34717360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies.
    Hübner M; Koziej D; Grunwaldt JD; Weimar U; Barsan N
    Phys Chem Chem Phys; 2012 Oct; 14(38):13249-54. PubMed ID: 22918269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HERFD XAS/ATR-FTIR batch reactor cell.
    Makosch M; Kartusch C; Sá J; Duarte RB; van Bokhoven JA; Kvashnina K; Glatzel P; Fernandes DL; Nachtegaal M; Kleymenov E; Szlachetko J; Neuhold B; Hungerbühler K
    Phys Chem Chem Phys; 2012 Feb; 14(7):2164-70. PubMed ID: 21909561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and Their Selectivity for the Electrochemical CO
    Jeon HS; Timoshenko J; Scholten F; Sinev I; Herzog A; Haase FT; Roldan Cuenya B
    J Am Chem Soc; 2019 Dec; 141(50):19879-19887. PubMed ID: 31762283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Native Oxide Skin of Liquid Metal Ga Nanoparticles Prevents Their Rapid Coalescence during Electrocatalysis.
    Okatenko V; Castilla-Amorós L; Stoian DC; Vávra J; Loiudice A; Buonsanti R
    J Am Chem Soc; 2022 Jun; 144(22):10053-10063. PubMed ID: 35616631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.