These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37677109)

  • 21. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO
    Müller A; Comas-Vives A; Copéret C
    Chem Sci; 2022 Nov; 13(45):13442-13458. PubMed ID: 36507169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes.
    Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning CO
    Reddy KP; Kim D; Hong S; Kim KJ; Ryoo R; Park JY
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances of Indium Oxide-Based Catalysts for CO
    Cai D; Cai Y; Tan KB; Zhan G
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO
    Kar S; Sen R; Kothandaraman J; Goeppert A; Chowdhury R; Munoz SB; Haiges R; Prakash GKS
    J Am Chem Soc; 2019 Feb; 141(7):3160-3170. PubMed ID: 30753062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.
    Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual active sites over Cu-ZnO-ZrO
    Sun X; Jin Y; Cheng Z; Lan G; Wang X; Qiu Y; Wang Y; Liu H; Li Y
    J Environ Sci (China); 2023 Sep; 131():162-172. PubMed ID: 37225377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO
    Cored J; García-Ortiz A; Iborra S; Climent MJ; Liu L; Chuang CH; Chan TS; Escudero C; Concepción P; Corma A
    J Am Chem Soc; 2019 Dec; 141(49):19304-19311. PubMed ID: 31774282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals.
    Mirzakhani S; Yin BH; Masteri-Farahani M; Yip ACK
    Chempluschem; 2023 Jul; 88(7):e202300157. PubMed ID: 37263976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silica accelerates the selective hydrogenation of CO
    Wang L; Guan E; Wang Y; Wang L; Gong Z; Cui Y; Meng X; Gates BC; Xiao FS
    Nat Commun; 2020 Feb; 11(1):1033. PubMed ID: 32098956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flame Synthesis of Cu/ZnO-CeO
    Zhu J; Ciolca D; Liu L; Parastaev A; Kosinov N; Hensen EJM
    ACS Catal; 2021 Apr; 11(8):4880-4892. PubMed ID: 33898079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordination tailoring of Cu single sites on C
    Yang T; Mao X; Zhang Y; Wu X; Wang L; Chu M; Pao CW; Yang S; Xu Y; Huang X
    Nat Commun; 2021 Oct; 12(1):6022. PubMed ID: 34654822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supported Cu Nanoparticles as Selective and Stable Catalysts for the Gas Phase Hydrogenation of 1,3-Butadiene in Alkene-Rich Feeds.
    Totarella G; Beerthuis R; Masoud N; Louis C; Delannoy L; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2021 Jan; 125(1):366-375. PubMed ID: 33488906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective Hydrogenation of CO
    Wang L; Wang L; Zhang J; Liu X; Wang H; Zhang W; Yang Q; Ma J; Dong X; Yoo SJ; Kim JG; Meng X; Xiao FS
    Angew Chem Int Ed Engl; 2018 May; 57(21):6104-6108. PubMed ID: 29660228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of iron complexes catalyzed in the
    Shen X; Wang W; Wang Q; Liu J; Huang F; Sun C; Yang C; Chen D
    Phys Chem Chem Phys; 2021 Aug; 23(31):16675-16689. PubMed ID: 34337631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts.
    Mitsudome T; Takahashi Y; Mizugaki T; Jitsukawa K; Kaneda K
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8348-51. PubMed ID: 25087622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manganese Oxide as a Promoter for Copper Catalysts in CO
    Dalebout R; Barberis L; Visser NL; van der Hoeven JES; van der Eerden AMJ; Stewart JA; Meirer F; de Jong KP; de Jongh PE
    ChemCatChem; 2022 Oct; 14(19):e202200451. PubMed ID: 36605570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.