BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37677157)

  • 1. Strict Interactions of Fifth Letters, Hydrophobic Unnatural Bases, in XenoAptamers with Target Proteins.
    Kimoto M; Tan HP; Matsunaga KI; Binte Mohd Mislan NA; Kawai G; Hirao I
    J Am Chem Soc; 2023 Sep; 145(37):20432-20441. PubMed ID: 37677157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
    Kimoto M; Hirao I
    ACS Synth Biol; 2017 Oct; 6(10):1944-1951. PubMed ID: 28704034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly specific unnatural base pair systems as a third base pair for PCR amplification.
    Yamashige R; Kimoto M; Takezawa Y; Sato A; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2012 Mar; 40(6):2793-806. PubMed ID: 22121213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system.
    Kimoto M; Yamashige R; Yokoyama S; Hirao I
    J Nucleic Acids; 2012; 2012():230943. PubMed ID: 22792445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Sequencing Method Including Unnatural Bases for DNA Aptamer Generation by Genetic Alphabet Expansion.
    Hamashima K; Soong YT; Matsunaga KI; Kimoto M; Hirao I
    ACS Synth Biol; 2019 Jun; 8(6):1401-1410. PubMed ID: 30995835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion.
    Kimoto M; Tan HP; Tan YS; Mislan NABM; Hirao I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220031. PubMed ID: 36633272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
    Matsunaga KI; Kimoto M; Hirao I
    J Am Chem Soc; 2017 Jan; 139(1):324-334. PubMed ID: 27966933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system.
    Yamashige R; Kimoto M; Mitsui T; Yokoyama S; Hirao I
    Org Biomol Chem; 2011 Nov; 9(21):7504-9. PubMed ID: 21935564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of high-affinity DNA aptamers using an expanded genetic alphabet.
    Kimoto M; Yamashige R; Matsunaga K; Yokoyama S; Hirao I
    Nat Biotechnol; 2013 May; 31(5):453-7. PubMed ID: 23563318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient unnatural base pair for PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    J Am Chem Soc; 2007 Dec; 129(50):15549-55. PubMed ID: 18027940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an unnatural base pair for efficient PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):9-10. PubMed ID: 18029560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification.
    Matsunaga KI; Kimoto M; Lim VW; Tan HP; Wong YQ; Sun W; Vasoo S; Leo YS; Hirao I
    Nucleic Acids Res; 2021 Nov; 49(20):11407-11424. PubMed ID: 34169309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Alphabet Expansion Provides Versatile Specificities and Activities of Unnatural-Base DNA Aptamers Targeting Cancer Cells.
    Futami K; Kimoto M; Lim YWS; Hirao I
    Mol Ther Nucleic Acids; 2019 Mar; 14():158-170. PubMed ID: 30594072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Deep Vent DNA polymerase.
    Hikida Y; Kimoto M; Hirao I; Yokoyama S
    Biochem Biophys Res Commun; 2017 Jan; 483(1):52-57. PubMed ID: 28063932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Hirao I
    Methods Mol Biol; 2010; 634():355-69. PubMed ID: 20676996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology.
    Kimoto M; Mitsui T; Yamashige R; Sato A; Yokoyama S; Hirao I
    J Am Chem Soc; 2010 Nov; 132(43):15418-26. PubMed ID: 20939572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences around the unnatural base pair in DNA templates for efficient replication.
    Kimoto M; Kawai R; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2008; (52):457-8. PubMed ID: 18776451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.