These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37678047)

  • 1. A miniaturized photometric ozone sensor using ultraviolet LED with unbalance differential correction and 3D printing.
    Meng Y; Han R; Wan H; Wang Z; Du Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123335. PubMed ID: 37678047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Performance Evaluation of a Deep Ultraviolet LED-Based Ozone Sensor for Semiconductor Industry Applications.
    Xu M; Tian X; Lin Y; Xu Y; Tao J
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Low-Cost Miniaturized Gas Cells via SLA 3D-Printing for UV-Based Gas Sensors.
    Barreto DN; Gelamo R; Mizaikoff B; Petruci JFDS
    ACS Omega; 2024 Feb; 9(7):8374-8380. PubMed ID: 38405469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of different crystalline phases of In
    Sui N; Cao S; Zhang P; Zhou T; Zhang T
    J Hazard Mater; 2021 Sep; 418():126290. PubMed ID: 34107369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heterogenous dopant and high temperature pulse excitation on ozone sensing behavior of In
    Sui N; Song Z; Xu X; Cao S; Xu Y; Zhou T; Zhang T
    J Hazard Mater; 2024 Mar; 465():133379. PubMed ID: 38160555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Network of Accurate Ozone Sensing Nodes for Parallel Monitoring in a Site Relocation Study.
    Feenstra B; Papapostolou V; Der Boghossian B; Cocker D; Polidori A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y; Liang T; Qiao S; Ma Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).
    Li Y; Zhang X; Li X; Cui Z; Xiao H
    Appl Spectrosc; 2018 Aug; 72(8):1244-1251. PubMed ID: 29726705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Integrated In Situ Photoenergy Gas Sensor with Deep Ultraviolet LED.
    Zhang S; Li H; Wang X; Liu Y; Dai J; Chen C
    ACS Omega; 2020 May; 5(17):9985-9990. PubMed ID: 32391486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Ozone Sensor Based on Selective Oxidation of Methylene Blue in Mesoporous Silica Films.
    Ghazaly C; Hébrant M; Langlois E; Castel B; Guillemot M; Etienne M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption.
    Cho I; Sim YC; Cho M; Cho YH; Park I
    ACS Sens; 2020 Feb; 5(2):563-570. PubMed ID: 31922397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber.
    Potyrailo RA; Hobbs SE; Hieftje GM
    Anal Chem; 1998 Apr; 70(8):1639-45. PubMed ID: 9569770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature.
    Joshi N; da Silva LF; Shimizu FM; Mastelaro VR; M'Peko JC; Lin L; Oliveira ON
    Mikrochim Acta; 2019 Jun; 186(7):418. PubMed ID: 31187269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Liquid Cooling Interface for a Deep-UV-LED-Based Flow-Through Absorbance Detector.
    Lam SC; Gupta V; Haddad PR; Paull B
    Anal Chem; 2019 Jul; 91(14):8795-8800. PubMed ID: 31185715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential interference bias in ozone standard compliance monitoring.
    Leston AR; Ollison WM; Spicer CW; Satola J
    J Air Waste Manag Assoc; 2005 Oct; 55(10):1464-72. PubMed ID: 16295271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs.
    Saarela J; Sorvajärvi T; Laurila T; Toivonen J
    Opt Express; 2011 Jul; 19 Suppl 4():A725-32. PubMed ID: 21747540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of ozone and particulate matter sensors.
    DeWitt HL; Crow WL; Flowers B
    J Air Waste Manag Assoc; 2020 Mar; 70(3):292-306. PubMed ID: 31961265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015.
    Dreessen J; Sullivan J; Delgado R
    J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term calibration models to estimate ozone concentrations with a metal oxide sensor.
    Sayahi T; Garff A; Quah T; Lê K; Becnel T; Powell KM; Gaillardon PE; Butterfield AE; Kelly KE
    Environ Pollut; 2020 Dec; 267():115363. PubMed ID: 32871483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review.
    Khan S; Newport D; Le Calvé S
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.