These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37678088)

  • 81. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies.
    Sithole MN; Kumar P; Du Toit LC; Erlwanger KH; Ubanako PN; Choonara YE
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108772
    [TBL] [Abstract][Full Text] [Related]  

  • 83. 3D Printing of Bioactive Gel-like Double Emulsion into a Biocompatible Hierarchical Macroporous Self-Lubricating Scaffold for 3D Cell Culture.
    Shahbazi M; Jäger H; Mohammadi A; Asghartabar Kashi P; Chen J; Ettelaie R
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49874-49891. PubMed ID: 37824503
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A pH-neutral bioactive glass coated 3D-printed porous Ti6Al4V scaffold with enhanced osseointegration.
    Wang X; Guo Q; He Y; Geng X; Wang C; Li Y; Li Z; Wang C; Qiu D; Tian H
    J Mater Chem B; 2023 Feb; 11(6):1203-1212. PubMed ID: 36515141
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Design and analysis of three-dimensional printing of a porous titanium scaffold.
    Yang J; Li Y; Shi X; Shen M; Shi K; Shen L; Yang C
    BMC Musculoskelet Disord; 2021 Aug; 22(1):654. PubMed ID: 34340671
    [TBL] [Abstract][Full Text] [Related]  

  • 86.
    Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J
    Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg.
    Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Design of customized implants and 3D printing of symmetric and asymmetric cranial cavities.
    Singh HN; Agrawal S; Kuthe AM
    J Mech Behav Biomed Mater; 2023 Oct; 146():106061. PubMed ID: 37544200
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction.
    Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.
    Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B
    ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Does implantation site influence bone ingrowth into 3D-printed porous implants?
    Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ
    Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti
    Liu H; Li W; Liu C; Tan J; Wang H; Hai B; Cai H; Leng HJ; Liu ZJ; Song CL
    Biofabrication; 2016 Oct; 8(4):045012. PubMed ID: 27788122
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
    Chen J; Zhang Z; Chen X; Zhang C; Zhang G; Xu Z
    J Prosthet Dent; 2014 Nov; 112(5):1088-95.e1. PubMed ID: 24939253
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Design Optimization and Manufacturing of Bio-fixed tibial implants using 3D printing technology.
    Guoqing Z; Junxin L; Chengguang Z; Juanjuan X; Xiaoyu Z; Anmin W
    J Mech Behav Biomed Mater; 2021 May; 117():104415. PubMed ID: 33652236
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.
    Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X
    Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.