BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3767840)

  • 1. DNA repair genes of mammalian cells.
    Thompson LH; Brookman KW; Salazar EP; Fuscoe JC; Weber CA
    Basic Life Sci; 1986; 39():349-58. PubMed ID: 3767840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress with the DNA repair mutants of Chinese hamster ovary cells.
    Thompson LH; Salazar EP; Brookman KW; Collins CC; Stewart SA; Busch DB; Weber CA
    J Cell Sci Suppl; 1987; 6():97-110. PubMed ID: 3477565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assignment of a human DNA-repair gene associated with sister-chromatid exchange to chromosome 19.
    Siciliano MJ; Carrano AV; Thompson LH
    Mutat Res; 1986 Aug; 174(4):303-8. PubMed ID: 3736579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts.
    Thompson LH; Mooney CL; Brookman KW
    Mutat Res; 1985; 150(1-2):423-9. PubMed ID: 4000167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group-2 mutants.
    van Duin M; Janssen JH; de Wit J; Hoeijmakers JH; Thompson LH; Bootsma D; Westerveld A
    Mutat Res; 1988 Mar; 193(2):123-30. PubMed ID: 3347205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids.
    Thompson LH; Carrano AV; Sato K; Salazar EP; White BF; Stewart SA; Minkler JL; Siciliano MJ
    Somat Cell Mol Genet; 1987 Sep; 13(5):539-51. PubMed ID: 3477874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells.
    Karentz D; Cleaver JE
    Mol Cell Biol; 1986 Oct; 6(10):3428-32. PubMed ID: 3796587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of a nucleotide-excision-repair mutation by human chromosome 19 in hamster-human hybrid cells.
    Thompson LH; Mooney CL; Burkhart-Schultz K; Carrano AV; Siciliano MJ
    Somat Cell Mol Genet; 1985 Jan; 11(1):87-92. PubMed ID: 3919454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination.
    Mudgett JS; MacInnes MA
    Genomics; 1990 Dec; 8(4):623-33. PubMed ID: 2276736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and biological characterization of the human excision repair gene ERCC-3.
    Weeda G; van Ham RC; Masurel R; Westerveld A; Odijk H; de Wit J; Bootsma D; van der Eb AJ; Hoeijmakers JH
    Mol Cell Biol; 1990 Jun; 10(6):2570-81. PubMed ID: 2111438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotype of FAECB (Facility for Automated Experiments in Cell Biology) Chinese hamster ovary mutants with minimal UV-sensitivity.
    Busch DB; White Ziffer D; Coleman D; Wills L; McDonough HG; Jones NJ
    Mutat Res; 2001 Nov; 487(1-2):31-9. PubMed ID: 11595406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells.
    Arrand JE; Bone NM; Johnson RT
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6997-7001. PubMed ID: 2780557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9.
    Kaur GP; Athwal RS
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8872-6. PubMed ID: 2813428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5.
    Kaur GP; Athwal RS
    Somat Cell Mol Genet; 1993 Jan; 19(1):83-93. PubMed ID: 8460401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange.
    Thompson LH; Brookman KW; Dillehay LE; Carrano AV; Mazrimas JA; Mooney CL; Minkler JL
    Mutat Res; 1982 Aug; 95(2-3):427-40. PubMed ID: 6889677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange.
    Wilson JB; Johnson MA; Stuckert AP; Trueman KL; May S; Bryant PE; Meyn RE; D'Andrea AD; Jones NJ
    Carcinogenesis; 2001 Dec; 22(12):1939-46. PubMed ID: 11751423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of genes and proteins involved in excision repair of human cells.
    Hoeijmakers JH
    J Cell Sci Suppl; 1987; 6():111-25. PubMed ID: 2821019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells.
    Weber CA; Salazar EP; Stewart SA; Thompson LH
    Mol Cell Biol; 1988 Mar; 8(3):1137-46. PubMed ID: 2835663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation enhancement of the efficiency of DNA-mediated gene transfer in CHO UV-sensitive mutants.
    Perez CF; Skarsgard LD
    Radiat Res; 1986 Jun; 106(3):401-7. PubMed ID: 3714981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19.
    Thompson LH; Bachinski LL; Stallings RL; Dolf G; Weber CA; Westerveld A; Siciliano MJ
    Genomics; 1989 Nov; 5(4):670-9. PubMed ID: 2591959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.