These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3767840)
1. DNA repair genes of mammalian cells. Thompson LH; Brookman KW; Salazar EP; Fuscoe JC; Weber CA Basic Life Sci; 1986; 39():349-58. PubMed ID: 3767840 [TBL] [Abstract][Full Text] [Related]
2. Recent progress with the DNA repair mutants of Chinese hamster ovary cells. Thompson LH; Salazar EP; Brookman KW; Collins CC; Stewart SA; Busch DB; Weber CA J Cell Sci Suppl; 1987; 6():97-110. PubMed ID: 3477565 [TBL] [Abstract][Full Text] [Related]
3. Assignment of a human DNA-repair gene associated with sister-chromatid exchange to chromosome 19. Siciliano MJ; Carrano AV; Thompson LH Mutat Res; 1986 Aug; 174(4):303-8. PubMed ID: 3736579 [TBL] [Abstract][Full Text] [Related]
4. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Thompson LH; Mooney CL; Brookman KW Mutat Res; 1985; 150(1-2):423-9. PubMed ID: 4000167 [TBL] [Abstract][Full Text] [Related]
5. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group-2 mutants. van Duin M; Janssen JH; de Wit J; Hoeijmakers JH; Thompson LH; Bootsma D; Westerveld A Mutat Res; 1988 Mar; 193(2):123-30. PubMed ID: 3347205 [TBL] [Abstract][Full Text] [Related]
6. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids. Thompson LH; Carrano AV; Sato K; Salazar EP; White BF; Stewart SA; Minkler JL; Siciliano MJ Somat Cell Mol Genet; 1987 Sep; 13(5):539-51. PubMed ID: 3477874 [TBL] [Abstract][Full Text] [Related]
7. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells. Karentz D; Cleaver JE Mol Cell Biol; 1986 Oct; 6(10):3428-32. PubMed ID: 3796587 [TBL] [Abstract][Full Text] [Related]
8. Correction of a nucleotide-excision-repair mutation by human chromosome 19 in hamster-human hybrid cells. Thompson LH; Mooney CL; Burkhart-Schultz K; Carrano AV; Siciliano MJ Somat Cell Mol Genet; 1985 Jan; 11(1):87-92. PubMed ID: 3919454 [TBL] [Abstract][Full Text] [Related]
9. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination. Mudgett JS; MacInnes MA Genomics; 1990 Dec; 8(4):623-33. PubMed ID: 2276736 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Weeda G; van Ham RC; Masurel R; Westerveld A; Odijk H; de Wit J; Bootsma D; van der Eb AJ; Hoeijmakers JH Mol Cell Biol; 1990 Jun; 10(6):2570-81. PubMed ID: 2111438 [TBL] [Abstract][Full Text] [Related]
11. Phenotype of FAECB (Facility for Automated Experiments in Cell Biology) Chinese hamster ovary mutants with minimal UV-sensitivity. Busch DB; White Ziffer D; Coleman D; Wills L; McDonough HG; Jones NJ Mutat Res; 2001 Nov; 487(1-2):31-9. PubMed ID: 11595406 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells. Arrand JE; Bone NM; Johnson RT Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6997-7001. PubMed ID: 2780557 [TBL] [Abstract][Full Text] [Related]
13. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9. Kaur GP; Athwal RS Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8872-6. PubMed ID: 2813428 [TBL] [Abstract][Full Text] [Related]
14. Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5. Kaur GP; Athwal RS Somat Cell Mol Genet; 1993 Jan; 19(1):83-93. PubMed ID: 8460401 [TBL] [Abstract][Full Text] [Related]
15. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Thompson LH; Brookman KW; Dillehay LE; Carrano AV; Mazrimas JA; Mooney CL; Minkler JL Mutat Res; 1982 Aug; 95(2-3):427-40. PubMed ID: 6889677 [TBL] [Abstract][Full Text] [Related]
16. The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. Wilson JB; Johnson MA; Stuckert AP; Trueman KL; May S; Bryant PE; Meyn RE; D'Andrea AD; Jones NJ Carcinogenesis; 2001 Dec; 22(12):1939-46. PubMed ID: 11751423 [TBL] [Abstract][Full Text] [Related]
17. Characterization of genes and proteins involved in excision repair of human cells. Hoeijmakers JH J Cell Sci Suppl; 1987; 6():111-25. PubMed ID: 2821019 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Weber CA; Salazar EP; Stewart SA; Thompson LH Mol Cell Biol; 1988 Mar; 8(3):1137-46. PubMed ID: 2835663 [TBL] [Abstract][Full Text] [Related]
19. Radiation enhancement of the efficiency of DNA-mediated gene transfer in CHO UV-sensitive mutants. Perez CF; Skarsgard LD Radiat Res; 1986 Jun; 106(3):401-7. PubMed ID: 3714981 [TBL] [Abstract][Full Text] [Related]
20. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Thompson LH; Bachinski LL; Stallings RL; Dolf G; Weber CA; Westerveld A; Siciliano MJ Genomics; 1989 Nov; 5(4):670-9. PubMed ID: 2591959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]