These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37678528)

  • 21. The role of digital finance in reducing agricultural carbon emissions: evidence from China's provincial panel data.
    Chang J
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87730-87745. PubMed ID: 35819678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial effects of carbon emission intensity and regional development in China.
    Wang Y; Zheng Y
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):14131-14143. PubMed ID: 33210249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposition and prediction of China's carbon emission intensity towards carbon neutrality: From perspectives of national, regional and sectoral level.
    Chen H; Qi S; Tan X
    Sci Total Environ; 2022 Jun; 825():153839. PubMed ID: 35176383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agricultural Economic Evidence and Policy Prospects under Agricultural Trade Shocks and Carbon Dioxide Emissions.
    Kang J; Zhao M
    J Environ Public Health; 2022; 2022():5988270. PubMed ID: 36060874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the Spatiotemporal Characteristics of Agricultural Eco-Efficiency Alongside China's Carbon Neutrality Targets.
    Cheng C; Li J; Qiu Y; Gao C; Gao Q
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nexus between agro-ecological efficiency and carbon emission transfer: evidence from China.
    Akbar U; Li QL; Akmal MA; Shakib M; Iqbal W
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18995-19007. PubMed ID: 32564312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can information and communication technology reduce CO
    Chen X; Gong X; Li D; Zhang J
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32977-32992. PubMed ID: 31512130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the digital economy and its effect on carbon performance: the case of China.
    Cui H; Cao Y; Zhang C
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73299-73320. PubMed ID: 37183222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China's Manufacturing.
    Tang L; Lu B; Tian T
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the impacts of technological progress on agricultural energy consumption and carbon emissions based on multi-scenario analysis.
    Song S; Zhang L; Ma Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16673-16686. PubMed ID: 36190627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: considering carbon sink effect.
    Cui Y; Khan SU; Deng Y; Zhao M
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38909-38928. PubMed ID: 33745048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Digital Transformation on Enterprise Carbon Intensity: The Moderating Role of Digital Information Resources.
    Yang G; Wang F; Deng F; Xiang X
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of regional agricultural carbon emission efficiency and influencing factors: Case study of Hubei Province in China.
    Shan T; Xia Y; Hu C; Zhang S; Zhang J; Xiao Y; Dan F
    PLoS One; 2022; 17(4):e0266172. PubMed ID: 35482771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Do biased technological advances affect carbon productivity of service sector: Evidence from China.
    Wu Z; Huang W; Ge Y; Dai Y; Zu F
    Heliyon; 2023 Jul; 9(7):e18071. PubMed ID: 37539321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does the Digital Economy Promote the Reduction of Urban Carbon Emission Intensity?
    Jing S; Wu F; Shi E; Wu X; Du M
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the driving forces of China's carbon intensity based on a dynamic spatial model.
    Huang J
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21833-21843. PubMed ID: 29796885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of digital trade on regional carbon emissions.
    Ji H; Xiong B; Zhou F
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):105474-105488. PubMed ID: 37715910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Industrial digitization and synergy between pollution and carbon emissions control: new empirical evidence from China.
    Yi Y; Cheng R; Wang H; Yi M; Huang Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36127-36142. PubMed ID: 36539663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study measuring the degree of integration between the digital economy and logistics industry in China.
    Zhang W; Liu H; Yao Y; Fan Z
    PLoS One; 2022; 17(9):e0274006. PubMed ID: 36137155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the extension of the dynamic benchmark system of per capita carbon emissions in China's county.
    Yang F; Shi L; Wang X; Gao L
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10256-10271. PubMed ID: 36070041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.