These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37679324)

  • 1. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets.
    Ham DT; Browne TS; Banglorewala PN; Wilson TL; Michael RK; Gloor GB; Edgell DR
    Nat Commun; 2023 Sep; 14(1):5514. PubMed ID: 37679324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity.
    Chari R; Yeo NC; Chavez A; Church GM
    ACS Synth Biol; 2017 May; 6(5):902-904. PubMed ID: 28146356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity.
    Xiao LM; Wan YQ; Jiang ZR
    BMC Bioinformatics; 2021 Dec; 22(1):589. PubMed ID: 34903170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction.
    Li B; Ai D; Liu X
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency.
    Wan Y; Jiang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency.
    Liu Y; Fan R; Yi J; Cui Q; Cui C
    Comput Biol Med; 2023 Oct; 165():107476. PubMed ID: 37696181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs.
    Huszár K; Welker Z; Györgypál Z; Tóth E; Ligeti Z; Kulcsár PI; Dancsó J; Tálas A; Krausz SL; Varga É; Welker E
    Nucleic Acids Res; 2023 Jun; 51(11):5847-5863. PubMed ID: 37140059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity.
    Eslami-Mossallam B; Klein M; Smagt CVD; Sanden KVD; Jones SK; Hawkins JA; Finkelstein IJ; Depken M
    Nat Commun; 2022 Mar; 13(1):1367. PubMed ID: 35292641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing directed evolution to interrogate and optimize CRISPR/Cas guide RNA scaffolds.
    Bush K; Corsi GI; Yan AC; Haynes K; Layzer JM; Zhou JH; Llanga T; Gorodkin J; Sullenger BA
    Cell Chem Biol; 2023 Aug; 30(8):879-892.e5. PubMed ID: 37390831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.
    Zhang G; Luo Y; Dai X; Dai Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37775147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency.
    Wang G; Wang C; Chu T; Wu X; Anderson CM; Huang D; Li J
    J Biotechnol; 2023 May; 368():42-52. PubMed ID: 37116617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.