These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37679452)
1. Feasting on hydrocarbons via dendritic biofilms. Taglialegna A Nat Rev Microbiol; 2023 Nov; 21(11):703. PubMed ID: 37679452 [No Abstract] [Full Text] [Related]
2. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants. Al-Bader D; Kansour MK; Rayan R; Radwan SS Environ Sci Pollut Res Int; 2013 May; 20(5):3252-62. PubMed ID: 23089957 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables. Al-Mailem DM; Kansour MK; Radwan SS Appl Biochem Biotechnol; 2014 Nov; 174(5):1736-51. PubMed ID: 25146193 [TBL] [Abstract][Full Text] [Related]
4. Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes. Al-Mailem DM; Kansour MK; Radwan SS Can J Microbiol; 2014 Jul; 60(7):477-86. PubMed ID: 25011928 [TBL] [Abstract][Full Text] [Related]
5. Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Coulon F; Chronopoulou PM; Fahy A; Païssé S; Goñi-Urriza M; Peperzak L; Acuña Alvarez L; McKew BA; Brussaard CP; Underwood GJ; Timmis KN; Duran R; McGenity TJ Appl Environ Microbiol; 2012 May; 78(10):3638-48. PubMed ID: 22407688 [TBL] [Abstract][Full Text] [Related]
6. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Abed RM; Musat N; Musat F; Mussmann M Mar Pollut Bull; 2011 Mar; 62(3):539-46. PubMed ID: 21194714 [TBL] [Abstract][Full Text] [Related]
7. Hydrophobicity of diverse bacterial populations in activated sludge and biofilm revealed by microbial adhesion to hydrocarbons assay and high-throughput sequencing. Chao Y; Guo F; Fang HH; Zhang T Colloids Surf B Biointerfaces; 2014 Feb; 114():379-85. PubMed ID: 24246196 [TBL] [Abstract][Full Text] [Related]
8. Perspectives for the genetic engineering of hydrocarbon oxidizing bacteria. Shapiro JA; Carbit A; Benson S; Caruso M; Laux R; Meyer R; Banuett F Basic Life Sci; 1982; 19():101-2. PubMed ID: 6279080 [No Abstract] [Full Text] [Related]
9. Insights into the response of electroactive biofilm with petroleum hydrocarbons degradation ability to quorum sensing signals. Xue J; Ma H; Dong X; Shi K; Zhou X; Qiao Y; Gao Y; Liu Y; Feng Y; Jiang Q J Hazard Mater; 2024 Jun; 471():134407. PubMed ID: 38677122 [TBL] [Abstract][Full Text] [Related]
10. Perspectives for genetic engineering of hydrocarbon oxidizing bacteria. Shapiro JA; Charbit A; Benson S; Caruso M; Laux R; Meyer R; Banuett F Basic Life Sci; 1981; 18():243-72. PubMed ID: 6944066 [No Abstract] [Full Text] [Related]
11. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Ennouri H; d'Abzac P; Hakil F; Branchu P; Naïtali M; Lomenech AM; Oueslati R; Desbrières J; Sivadon P; Grimaud R Environ Microbiol; 2017 Jan; 19(1):159-173. PubMed ID: 27727521 [TBL] [Abstract][Full Text] [Related]
13. The 52nd Annual Wind River Conference On Prokaryotic Biology--2008. Mann E; Zaunbrecher MA; Hitz K; Churchward G J Bacteriol; 2008 Dec; 190(24):7871-5. PubMed ID: 18931109 [No Abstract] [Full Text] [Related]
14. Environmental proteomic studies: closer step to understand bacterial biofilms. Rani A; Babu S World J Microbiol Biotechnol; 2018 Jul; 34(8):120. PubMed ID: 30022302 [TBL] [Abstract][Full Text] [Related]
15. A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Abbasian F; Lockington R; Megharaj M; Naidu R Appl Biochem Biotechnol; 2016 Jan; 178(2):224-50. PubMed ID: 26481232 [TBL] [Abstract][Full Text] [Related]
16. Utilisation of hydrocarbons and production of surfactants by bacteria isolated from plant leaf surfaces. Oso S; Walters M; Schlechter RO; Remus-Emsermann MNP FEMS Microbiol Lett; 2019 Mar; 366(6):. PubMed ID: 30916756 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Moslemy P; Neufeld RJ; Guiot SR Biotechnol Bioeng; 2002 Oct; 80(2):175-84. PubMed ID: 12209773 [TBL] [Abstract][Full Text] [Related]
18. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors. Demeter MA; Lemire JA; Mercer SM; Turner RJ Bioresour Technol; 2017 Mar; 228():116-124. PubMed ID: 28061393 [TBL] [Abstract][Full Text] [Related]
19. Biosurfactants and oil bioremediation. Ron EZ; Rosenberg E Curr Opin Biotechnol; 2002 Jun; 13(3):249-52. PubMed ID: 12180101 [TBL] [Abstract][Full Text] [Related]
20. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation. Zhang Y; Wang F; Zhu X; Zeng J; Zhao Q; Jiang X Bioresour Technol; 2015 Oct; 193():274-80. PubMed ID: 26141288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]