These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3767971)

  • 1. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals.
    Chan TM; Chen E; Tatoyan A; Shargill NS; Pleta M; Hochstein P
    Biochem Biophys Res Commun; 1986 Sep; 139(2):439-45. PubMed ID: 3767971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of hepatocyte protein kinase C by redox-cycling quinones.
    Kass GE; Duddy SK; Orrenius S
    Biochem J; 1989 Jun; 260(2):499-507. PubMed ID: 2764885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the effects of redox cycling and arylating quinones on hepatobiliary function and glutathione homeostasis in rat hepatocyte couplets.
    Stone V; Coleman R; Chipman JK
    Toxicol Appl Pharmacol; 1996 Jun; 138(2):195-200. PubMed ID: 8658520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of a membrane-associated phosphatidylinositol kinase through tyrosine-protein phosphorylation by naphthoquinones and orthovanadate.
    Chen YX; Yang DC; Brown AB; Jeng Y; Tatoyan A; Chan TM
    Arch Biochem Biophys; 1990 Nov; 283(1):184-92. PubMed ID: 1700668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Futile redox cycling: implications for oxygen radical toxicity.
    Hochstein P
    Fundam Appl Toxicol; 1983; 3(4):215-7. PubMed ID: 6313461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous quinones directly inhibit the respiratory NADH dehydrogenase in Escherichia coli.
    Imlay J; Fridovich I
    Arch Biochem Biophys; 1992 Jul; 296(1):337-46. PubMed ID: 1318694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of quinones on mitochondrial phosphorylation, Pi-ATP exchange, and ATPase activities. II. Vitamin K-2 homologues and K-1 derivatives.
    Chen LH; Dallam RD
    Arch Biochem Biophys; 1965 Jul; 111(1):104-20. PubMed ID: 4221488
    [No Abstract]   [Full Text] [Related]  

  • 12. Stimulation of tyrosine-specific protein phosphorylation and phosphatidylinositol phosphorylation by orthovanadate in rat liver plasma membrane.
    Yang DC; Brown AB; Chan TM
    Arch Biochem Biophys; 1989 Nov; 274(2):659-62. PubMed ID: 2802635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catecholamine-mediated positive inotropic effect of simple quinones is related to superoxide anion generation.
    Floreani M; Carpenedo F
    J Pharmacol Exp Ther; 1992 Feb; 260(2):468-73. PubMed ID: 1310736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibitors of protein-tyrosine kinases: pharmacological perspectives?].
    Jacquemin-Sablon A; Agbotounou WK; Pierre J
    Pathol Biol (Paris); 1995 May; 43(5):389-94. PubMed ID: 8532375
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of vitamin K and naphthoquinones on lipid peroxide formation and oxidative demethylation by liver microsomes.
    Wills ED
    Biochem Pharmacol; 1972 Jul; 21(13):1879-83. PubMed ID: 4405197
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ
    Chem Biol Interact; 1991; 80(1):1-41. PubMed ID: 1913977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets.
    Seung SA; Lee JY; Lee MY; Park JS; Chung JH
    Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One- and two-electron reduction of quinones by rat liver subcellular fractions.
    Nakamura M; Hayashi T
    J Biochem; 1994 Jun; 115(6):1141-7. PubMed ID: 7982895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.