These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37680065)

  • 1. Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels.
    Tropp J; Collins CP; Xie X; Daso RE; Mehta AS; Patel SP; Reddy MM; Levin SE; Sun C; Rivnay J
    Adv Mater; 2024 Jan; 36(1):e2306691. PubMed ID: 37680065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring.
    Wan R; Liu S; Li Z; Li G; Li H; Li J; Xu J; Liu X
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):198-207. PubMed ID: 38816323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics.
    Kim S; Choi H; Son D; Shin M
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding.
    Wang J; Li Q; Li K; Sun X; Wang Y; Zhuang T; Yan J; Wang H
    Adv Mater; 2022 Mar; 34(12):e2109904. PubMed ID: 35064696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels.
    Feig VR; Tran H; Lee M; Liu K; Huang Z; Beker L; Mackanic DG; Bao Z
    Adv Mater; 2019 Sep; 31(39):e1902869. PubMed ID: 31414520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEDOT:PSS hydrogels with high conductivity and biocompatibility for
    Yang T; Yang M; Xu C; Yang K; Su Y; Ye Y; Dou L; Yang Q; Ke W; Wang B; Luo Z
    J Mater Chem B; 2023 Apr; 11(14):3226-3235. PubMed ID: 36960662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation.
    Won D; Kim J; Choi J; Kim H; Han S; Ha I; Bang J; Kim KK; Lee Y; Kim TS; Park JH; Kim CY; Ko SH
    Sci Adv; 2022 Jun; 8(23):eabo3209. PubMed ID: 35675404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels.
    Xie X; Xu Z; Yu X; Jiang H; Li H; Feng W
    Nat Commun; 2023 Jul; 14(1):4289. PubMed ID: 37463898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing.
    Lopez-Larrea N; Criado-Gonzalez M; Dominguez-Alfaro A; Alegret N; Agua ID; Marchiori B; Mecerreyes D
    ACS Appl Polym Mater; 2022 Sep; 4(9):6749-6759. PubMed ID: 36119408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of conducting polymers.
    Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X
    Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels.
    Reynolds M; Stoy LM; Sun J; Opoku Amponsah PE; Li L; Soto M; Song S
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
    Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible Conductive Polymers with High Conductivity and High Stretchability.
    He H; Zhang L; Guan X; Cheng H; Liu X; Yu S; Wei J; Ouyang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26185-26193. PubMed ID: 31257845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printed Electroactive Hydrogel Architectures with Sub-100 µm Resolution Promote Myoblast Viability.
    Keate RL; Tropp J; Collins CP; Ware HOT; Petty AJ; Ameer GA; Sun C; Rivnay J
    Macromol Biosci; 2022 Aug; 22(8):e2200103. PubMed ID: 35596668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS.
    Kayser LV; Lipomi DJ
    Adv Mater; 2019 Mar; 31(10):e1806133. PubMed ID: 30600559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine induced multiple bonding in hyaluronic acid network to construct particle-free conductive hydrogel for reliable electro-biosensing.
    Zeng MZ; Wei D; Ding J; Tian Y; Wu XY; Chen ZH; Wu CH; Sun J; Yin HB; Fan HS
    Carbohydr Polym; 2023 Feb; 302():120403. PubMed ID: 36604075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.