These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37680357)

  • 1. Pitfalls and potential of high-throughput plant phenotyping platforms.
    Poorter H; Hummel GM; Nagel KA; Fiorani F; von Gillhaussen P; Virnich O; Schurr U; Postma JA; van de Zedde R; Wiese-Klinkenberg A
    Front Plant Sci; 2023; 14():1233794. PubMed ID: 37680357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental normalization of phenomics data generated by high throughput plant phenotyping systems.
    Lozano-Claros D; Meng X; Custovic E; Deng G; Berkowitz O; Whelan J; Lewsey MG
    Plant Methods; 2020; 16():111. PubMed ID: 32817754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPEN leaf: an open-source cloud-based phenotyping system for tracking dynamic changes at leaf-specific resolution in Arabidopsis.
    Swartz LG; Liu S; Dahlquist D; Kramer ST; Walter ES; McInturf SA; Bucksch A; Mendoza-Cózatl DG
    Plant J; 2023 Dec; 116(6):1600-1616. PubMed ID: 37733751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Automated Method for High-Throughput Screening of
    De Diego N; Fürst T; Humplík JF; Ugena L; Podlešáková K; Spíchal L
    Front Plant Sci; 2017; 8():1702. PubMed ID: 29046681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments.
    Valle B; Simonneau T; Boulord R; Sourd F; Frisson T; Ryckewaert M; Hamard P; Brichet N; Dauzat M; Christophe A
    Plant Methods; 2017; 13():98. PubMed ID: 29151844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid online plant leaf area change detection with high-throughput plant image data.
    Zhan Y; Zhang R; Zhou Y; Stoerger V; Hiller J; Awada T; Ge Y
    J Appl Stat; 2023; 50(14):2984-2998. PubMed ID: 37808616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpaTemHTP: A Data Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput Phenotyping Data.
    Kar S; Garin V; Kholová J; Vadez V; Durbha SS; Tanaka R; Iwata H; Urban MO; Adinarayana J
    Front Plant Sci; 2020; 11():552509. PubMed ID: 33329623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemometric approaches for calibrating high-throughput spectral imaging setups to support digital plant phenotyping by calibrating and transferring spectral models from a point spectrometer.
    Mishra P
    Anal Chim Acta; 2021 Dec; 1187():339154. PubMed ID: 34753582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.
    Kjaer KH; Ottosen CO
    Sensors (Basel); 2015 Jun; 15(6):13533-47. PubMed ID: 26066990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.
    Lootens P; Ruttink T; Rohde A; Combes D; Barre P; Roldán-Ruiz I
    Plant Methods; 2016; 12():32. PubMed ID: 27293473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction.
    Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X
    Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data workflow to support plant breeding decisions from a terrestrial field-based high-throughput plant phenotyping system.
    Thompson AL; Thorp KR; Conley MM; Roybal M; Moller D; Long JC
    Plant Methods; 2020; 16():97. PubMed ID: 32695214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth Analysis of Wheat Using Machine Vision: Opportunities and Challenges.
    Ajlouni M; Kruse A; Condori-Apfata JA; Valderrama Valencia M; Hoagland C; Yang Y; Mohammadi M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.
    Weraduwage SM; Chen J; Anozie FC; Morales A; Weise SE; Sharkey TD
    Front Plant Sci; 2015; 6():167. PubMed ID: 25914696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenocave: An Automated, Standalone, and Affordable Phenotyping System for Controlled Growth Conditions.
    Leiva F; Vallenback P; Ekblad T; Johansson E; Chawade A
    Plants (Basel); 2021 Aug; 10(9):. PubMed ID: 34579350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat (
    Lauterberg M; Saranga Y; Deblieck M; Klukas C; Krugman T; Perovic D; Ordon F; Graner A; Neumann K
    Front Plant Sci; 2022; 13():965287. PubMed ID: 36311121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.