These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37680964)

  • 1. Comparison of ASTM F2129 and ASTM F746 for Evaluating Crevice Corrosion.
    Sivan S; Rahman E; Weaver JD; Di Prima M
    J Test Eval; 2019 Jul; 47(4):2497-2511. PubMed ID: 37680964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro crevice corrosion behavior of implant materials.
    Sutow EJ; Jones DW; Milne EL
    J Dent Res; 1985 May; 64(5):842-7. PubMed ID: 3858307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure-dependent crevice corrosion damage of implant materials CoCr28Mo6, TiAl6V4 and REX 734 under severe inflammatory conditions.
    Herbster M; Rosemann P; Michael O; Harnisch K; Ecke M; Heyn A; Lohmann CH; Bertrand J; Halle T
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1687-1704. PubMed ID: 35174958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crevice corrosion of biomedical alloys: a novel method of assessing the effects of bone cement and its chemistry.
    Bryant M; Hu X; Farrar R; Brummitt K; Freeman R; Neville A
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):792-803. PubMed ID: 23359431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion Susceptibility and Allergy Potential of Austenitic Stainless Steels.
    Reclaru L; Ardelean LC
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy.
    Kawalec JS; Brown SA; Payer JH; Merritt K
    J Biomed Mater Res; 1995 Jul; 29(7):867-73. PubMed ID: 7593026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical properties of suprastructures galvanically coupled to a titanium implant.
    Oh KT; Kim KN
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):318-31. PubMed ID: 15264315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of porosity on corrosion behaviour of Ti-39Nb alloy for dental applications.
    Fojt J; Joska L
    Biomed Mater Eng; 2013; 23(3):183-95. PubMed ID: 23629532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro fretting crevice corrosion damage of CoCrMo alloys in phosphate buffered saline: Debris generation, chemistry and distribution.
    Zhu D; Liu Y; Gilbert JL
    Acta Biomater; 2020 Sep; 114():449-459. PubMed ID: 32771589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.
    Pourzal R; Hall DJ; Ehrich J; McCarthy SM; Mathew MT; Jacobs JJ; Urban RM
    Clin Orthop Relat Res; 2017 Dec; 475(12):3026-3043. PubMed ID: 28884275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wire fretting on the corrosion resistance of common medical alloys.
    Siddiqui DA; Sivan S; Weaver JD; Di Prima M
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2487-2494. PubMed ID: 27660927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires.
    Rondelli G; Vicentini B
    Biomaterials; 1999 Apr; 20(8):785-92. PubMed ID: 10353661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additively manufactured Ti-29Nb-21Zr shows improved oxide polarization resistance versus Ti-6Al-4V in inflammatory simulating solution.
    Kurtz MA; Wessinger AC; Mace A; Moreno-Reyes A; Gilbert JL
    J Biomed Mater Res A; 2023 Oct; 111(10):1538-1553. PubMed ID: 37129046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants.
    Rodrigues DC; Urban RM; Jacobs JJ; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):206-19. PubMed ID: 18683224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling.
    Gilbert JL; Buckley CA; Jacobs JJ
    J Biomed Mater Res; 1993 Dec; 27(12):1533-44. PubMed ID: 8113241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the corrosion susceptibility of metallic cement restrictors: comparative corrosion behavior of stainless steel and cobalt-chromium alloys.
    Pugh J; Jaffe WL; Kummer FJ
    Bull Hosp Joint Dis; 1976 Apr; 37(1):40-53. PubMed ID: 974288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant.
    Chen X; Shah K; Dong S; Peterson L; Callagon La Plante E; Sant G
    Dent Mater; 2020 Mar; 36(3):431-441. PubMed ID: 31992484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material.
    Reclaru L; Lerf R; Eschler PY; Blatter A; Meyer JM
    Biomaterials; 2002 Aug; 23(16):3479-85. PubMed ID: 12099292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.