These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37681017)

  • 1. A Method of Human-Like Compliant Assembly Based on Variable Admittance Control for Space Maintenance.
    Cao X; Huang X; Zhao Y; Sun Z; Li H; Jiang Z; Ceccarelli M
    Cyborg Bionic Syst; 2023; 4():0046. PubMed ID: 37681017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant-Control-Based Assisted Walking with Mobile Manipulator.
    Li W; Li P; Jin L; Xu R; Guo J; Wang J
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection.
    Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS
    Front Robot AI; 2021; 8():706558. PubMed ID: 34395538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.
    Du Z; Wang W; Yan Z; Dong W; Wang W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Stability in Human-Robot Cooperation with Admittance Control.
    Dimeas F; Aspragathos N
    IEEE Trans Haptics; 2016; 9(2):267-78. PubMed ID: 26780819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-Impedance Combined Control Strategy for Capture Operations Using a 3-DOF Space Manipulator with a Compliant End-Effector.
    Kang G; Zhang Q; Wu J; Zhang H
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A force-controlled planar haptic device for movement control analysis of the human arm.
    de Vlugt E; Schouten AC; van der Helm FC; Teerhuis PC; Brouwn GG
    J Neurosci Methods; 2003 Oct; 129(2):151-68. PubMed ID: 14511818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliant robotic behaviors for satellite servicing.
    Cressman J; Pokharna R; Newman W
    Front Robot AI; 2023; 10():1124207. PubMed ID: 37533424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.
    Zhang X; Zheng Y; Ota J; Huang Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28862691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Admittance Control Dynamic Models for Transparent Free-Motion Human-Robot Interaction.
    Bitikofer CK; Wolbrecht ET; Maura RM; Perry JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot.
    Mashayekhi M; Moghaddam MM
    J Biomech; 2022 Jun; 138():111104. PubMed ID: 35561557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Admittance Control Method Based on Parameters Fuzzification for Humanoid Steering Wheel Manipulation.
    Wu T; Ren J; Cheng C; Liu X; Peng H; Lu H
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.
    Kim H; Yang W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision avoidance analysis of human-robot physical interaction based on null-space impedance control of a dynamic reference arm plane.
    Sun Q; Guo S; Fei S
    Med Biol Eng Comput; 2023 Aug; 61(8):2077-2090. PubMed ID: 37326802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller.
    Xie C; Yang Q; Huang Y; Su S; Xu T; Song R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1332-1342. PubMed ID: 34813476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Human Force Scaling via Admittance Control for Physical Human-Robot Interaction.
    Hamad YM; Aydin Y; Basdogan C
    IEEE Trans Haptics; 2021; 14(4):750-761. PubMed ID: 33826517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed-accuracy characteristics of human-machine cooperative manipulation using virtual fixtures with variable admittance.
    Marayong P; Okamura AM
    Hum Factors; 2004; 46(3):518-32. PubMed ID: 15573549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Trajectory Planning of the Variable-Stiffness Flexible Manipulator Based on CADE Algorithm for Vibration Reduction Control.
    Cheng Q; Xu W; Liu Z; Hao X; Wang Y
    Front Bioeng Biotechnol; 2021; 9():766495. PubMed ID: 34692668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable force control and contact transition of a single link flexible robot using a fractional-order controller.
    Feliu-Talegon D; Feliu-Batlle V; Tejado I; Vinagre BM; HosseinNia SH
    ISA Trans; 2019 Jun; 89():139-157. PubMed ID: 30772063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.