These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37681297)
21. Comparison of Corrosion Performance of Extruded and Forged WE43 Mg Alloy. Liu G; Xu J; Feng B; Liu J; Qi D; Huang W; Yang P; Zhang S Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268853 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of magnesium alloys for use as an intraluminal tracheal for pediatric applications in a rat tracheal bypass model. Luffy SA; Wu J; Kumta PN; Gilbert TW J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1844-1853. PubMed ID: 30521126 [TBL] [Abstract][Full Text] [Related]
23. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165 [TBL] [Abstract][Full Text] [Related]
24. Biocompatibility and corrosion resistance of drug coatings with different polymers for magnesium alloy cardiovascular stents. Liu KP; Cheng AY; You JL; Chang YH; Tseng CC; Ger MD Colloids Surf B Biointerfaces; 2025 Jan; 245():114202. PubMed ID: 39255751 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. Jana A; Das M; Balla VK J Biomed Mater Res A; 2022 Feb; 110(2):462-487. PubMed ID: 34418295 [TBL] [Abstract][Full Text] [Related]
26. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442 [TBL] [Abstract][Full Text] [Related]
27. In vitro and in vivo corrosion measurements of Mg-6Zn alloys in the bile. Chen Y; Yan J; Wang Z; Yu S; Wang X; Yuan Z; Zhang X; Zhao C; Zheng Q Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():116-23. PubMed ID: 25063100 [TBL] [Abstract][Full Text] [Related]
28. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application. Wu J; Lee B; Saha P; N Kumta P J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611 [TBL] [Abstract][Full Text] [Related]
29. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
30. In vivo corrosion of four magnesium alloys and the associated bone response. Witte F; Kaese V; Haferkamp H; Switzer E; Meyer-Lindenberg A; Wirth CJ; Windhagen H Biomaterials; 2005 Jun; 26(17):3557-63. PubMed ID: 15621246 [TBL] [Abstract][Full Text] [Related]
31. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
32. A surface-engineered multifunctional TiO Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705 [TBL] [Abstract][Full Text] [Related]
33. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
34. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
35. In vivo study on biodegradable magnesium alloys: Bone healing around WE43 screws. Levorova J; Duskova J; Drahos M; Vrbova R; Vojtech D; Kubasek J; Bartos M; Dugova L; Ulmann D; Foltan R J Biomater Appl; 2018 Feb; 32(7):886-895. PubMed ID: 29192548 [TBL] [Abstract][Full Text] [Related]
36. Experimental Characterization and Numerical Modeling of the Corrosion Effect on the Mechanical Properties of the Biodegradable Magnesium Alloy WE43 for Orthopedic Applications. Saconi F; Diaz GH; Vieira AC; Ribeiro ML Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295234 [TBL] [Abstract][Full Text] [Related]
37. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
38. A strain-mediated corrosion model for bioabsorbable metallic stents. Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790 [TBL] [Abstract][Full Text] [Related]
39. In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model. Zhang S; Zheng Y; Zhang L; Bi Y; Li J; Liu J; Yu Y; Guo H; Li Y Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():414-422. PubMed ID: 27524036 [TBL] [Abstract][Full Text] [Related]
40. Fluoride-treated rare earth-free magnesium alloy ZK30: An inert and bioresorbable material for bone fracture treatment devices. Watanabe H; Xu W; Uno H; Uraya Y; Kugita M; Komohara Y; Niidome T; Sasaki M; Shimizu I; Fujita N; Kawano Y J Biomed Mater Res A; 2024 Jul; 112(7):963-972. PubMed ID: 38235956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]