These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37681297)
41. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation. Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907 [TBL] [Abstract][Full Text] [Related]
42. Magnesium-lithium thin films for neurological applications-An in vitro investigation of glial cytocompatibility and neuroinflammatory response. Bhat K; Schlotterose L; Hanke L; Helmholz H; Quandt E; Hattermann K; Willumeit-Römer R Acta Biomater; 2024 Apr; 178():307-319. PubMed ID: 38382831 [TBL] [Abstract][Full Text] [Related]
43. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. Xu L; Zhang E; Yin D; Zeng S; Yang K J Mater Sci Mater Med; 2008 Mar; 19(3):1017-25. PubMed ID: 17665099 [TBL] [Abstract][Full Text] [Related]
44. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent]. Wang X; Cui F; Li J; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798 [TBL] [Abstract][Full Text] [Related]
45. Effect of macrophages on in vitro corrosion behavior of magnesium alloy. Zhang J; Hiromoto S; Yamazaki T; Niu J; Huang H; Jia G; Li H; Ding W; Yuan G J Biomed Mater Res A; 2016 Oct; 104(10):2476-87. PubMed ID: 27223576 [TBL] [Abstract][Full Text] [Related]
46. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074 [TBL] [Abstract][Full Text] [Related]
47. In vitro and in vivo corrosion of the novel magnesium alloy Mg-La-Nd-Zr: influence of the measurement technique and in vivo implant location. Reifenrath J; Marten AK; Angrisani N; Eifler R; Weizbauer A Biomed Mater; 2015 Aug; 10(4):045021. PubMed ID: 26267552 [TBL] [Abstract][Full Text] [Related]
48. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041 [TBL] [Abstract][Full Text] [Related]
49. [Corrosive degradation of magnesium and its alloy as endovascular stent]. Chen S; Lu A; Hu X; Yu D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1246-50. PubMed ID: 22295723 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of Mg alloy tubes for biodegradable stent application. Hanada K; Matsuzaki K; Huang X; Chino Y Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183 [TBL] [Abstract][Full Text] [Related]
51. In vivo characterization of magnesium alloy biodegradation using electrochemical H Zhao D; Wang T; Nahan K; Guo X; Zhang Z; Dong Z; Chen S; Chou DT; Hong D; Kumta PN; Heineman WR Acta Biomater; 2017 Mar; 50():556-565. PubMed ID: 28069511 [TBL] [Abstract][Full Text] [Related]
53. Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid. Wang B; Gao W; Pan C; Liu D; Sun X J Funct Biomater; 2023 Jan; 14(2):. PubMed ID: 36826870 [TBL] [Abstract][Full Text] [Related]
54. Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment. Liu D; Hu S; Yin X; Liu J; Jia Z; Li Q Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():263-270. PubMed ID: 29519438 [TBL] [Abstract][Full Text] [Related]
55. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Lévesque J; Hermawan H; Dubé D; Mantovani D Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745 [TBL] [Abstract][Full Text] [Related]
56. Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials. Behera M; Rajput M; Acharya S; Nadammal N; Suwas S; Chatterjee K Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030150 [TBL] [Abstract][Full Text] [Related]
57. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications. Ding Y; Lin J; Wen C; Zhang D; Li Y J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2425-2434. PubMed ID: 29193657 [TBL] [Abstract][Full Text] [Related]
58. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys. Trinidad J; Arruebarrena G; Marco I; Hurtado I; Sáenz de Argandoña E Proc Inst Mech Eng H; 2013 Dec; 227(12):1301-11. PubMed ID: 24048076 [TBL] [Abstract][Full Text] [Related]
59. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes. Hakimi O; Aghion E; Goldman J Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129 [TBL] [Abstract][Full Text] [Related]
60. Influence of fine-grain and solid-solution strengthening on mechanical properties and in vitro degradation of WE43 alloy. Liu D; Ding Y; Guo T; Qin X; Guo C; Yu S; Lin S Biomed Mater; 2014 Feb; 9(1):015014. PubMed ID: 24457395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]