BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37681373)

  • 1. Prediction models of fire spread rate of
    Ren ML; Guo Y; Chen BX; Fan JL; Hu TX; Sun L
    Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2091-2100. PubMed ID: 37681373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].
    Zhang JL; Liu BF; Chu TF; Di XY; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smoke exposure levels prediction following laboratory combustion of Pinus koraiensis plantation surface fuel.
    Ning J; Yang G; Zhang Y; Geng D; Wang L; Liu X; Li Z; Yu H; Zhang J; Di X
    Sci Total Environ; 2023 Jul; 881():163402. PubMed ID: 37054794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation- A laboratory simulation study.
    Ning J; Yang G; Liu X; Geng D; Wang L; Li Z; Zhang Y; Di X; Sun L; Yu H
    Environ Int; 2022 Aug; 166():107352. PubMed ID: 35749994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].
    Jin S; Liu BF; Di XY; Chu TF; Zhang JL
    Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distribution of particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis - A laboratory simulation study.
    Ning J; Di X; Yu H; Yuan S; Yang G
    Environ Pollut; 2021 Oct; 287():117282. PubMed ID: 34022686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Construction of the additive model system for heartwood, sapwoodand bark taper of
    Subati S; Jia WW
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3437-3447. PubMed ID: 34676704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction models and the extrapolation effects for water content of surface dead fuels in the typical stand of the Great Xing'an Mountains of China by one-hour time step.
    Yu HZ; Shu LF; Deng JF; Yang G; Liang Q; Li JH; Zhu HY
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3959-3968. PubMed ID: 30584722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].
    Dong LB; Liu ZG; Li FR; Jiang LC
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2447-56. PubMed ID: 24417100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stand biomass model for
    Xin SD; Yan YX; Jiang LC
    Ying Yong Sheng Tai Xue Bao; 2020 Oct; 31(10):3322-3330. PubMed ID: 33314821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fire ignition patterns to manage prescribed fire behavior: Application to Mediterranean pine forests.
    Molina JR; Ortega M; Rodríguez Y Silva F
    J Environ Manage; 2022 Jan; 302(Pt A):114052. PubMed ID: 34741950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.
    Lecina-Diaz J; Alvarez A; Retana J
    PLoS One; 2014; 9(1):e85127. PubMed ID: 24465492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems.
    Resco de Dios V; Hedo J; Cunill Camprubí À; Thapa P; Martínez Del Castillo E; Martínez de Aragón J; Bonet JA; Balaguer-Romano R; Díaz-Sierra R; Yebra M; Boer MM
    Sci Total Environ; 2021 Nov; 797():149104. PubMed ID: 34303242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.
    Taylor KT; Maxwell BD; McWethy DB; Pauchard A; Nuñez MA; Whitlock C
    Ecology; 2017 Mar; 98(3):678-687. PubMed ID: 27935641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experiments on the influence of spot fire and topography interaction on fire rate of spread.
    Storey MA; Price OF; Almeida M; Ribeiro C; Bradstock RA; Sharples JJ
    PLoS One; 2021; 16(1):e0245132. PubMed ID: 33411769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace gas emissions from laboratory combustion of leaves typically consumed in forest fires in Southwest China.
    Sun Y; Zhang Q; Li K; Huo Y; Zhang Y
    Sci Total Environ; 2022 Nov; 846():157282. PubMed ID: 35835195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes of leaf functional traits of
    Gu Z; Wang B; Chen SF; Wang YW; Suo AL; Liu XD; Chen F
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1497-1504. PubMed ID: 35729125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury.
    Shearman TM; Varner JM; Hood SM; van Mantgem PJ; Cansler CA; Wright M
    Ecol Appl; 2023 Mar; 33(2):e2760. PubMed ID: 36218008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.