These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37681374)
21. [Spatial pattern and interspecific association of tree species in coniferous and deciduous broad-leaved mixed forest under different disturbance intensities]. Cui YH; Han YZ; Zhang MT; Yang XQ; Zhao ZH Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2053-2060. PubMed ID: 34212611 [TBL] [Abstract][Full Text] [Related]
22. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T Plant Methods; 2019; 15():17. PubMed ID: 30828356 [TBL] [Abstract][Full Text] [Related]
23. Estimation of forest canopy closure in northwest Yunnan based on multi-source remote sensing data colla-boration. Zhou WW; Shu QT; Wang SW; Yang ZD; Luo SL; Xu L; Xiao JN Ying Yong Sheng Tai Xue Bao; 2023 Jul; 34(7):1806-1816. PubMed ID: 37694464 [TBL] [Abstract][Full Text] [Related]
24. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests. Miraki M; Sohrabi H Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415 [TBL] [Abstract][Full Text] [Related]
25. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network. Chang Z; Yu H; Zhang Y; Wang K Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693 [TBL] [Abstract][Full Text] [Related]
26. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757 [TBL] [Abstract][Full Text] [Related]
27. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. Cao Y; Jiang K; Wu J; Yu F; Du W; Xu T PLoS One; 2020; 15(9):e0238530. PubMed ID: 32915830 [TBL] [Abstract][Full Text] [Related]
28. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models]. Yang XG; Fan WY; Yu Y Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3022-6. PubMed ID: 21284176 [TBL] [Abstract][Full Text] [Related]
29. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms. Tuerxun N; Zheng J; Wang R; Wang L; Liu L Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562 [TBL] [Abstract][Full Text] [Related]
30. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Dar JA; Sundarapandian S Environ Monit Assess; 2015 Feb; 187(2):55. PubMed ID: 25638061 [TBL] [Abstract][Full Text] [Related]
31. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Brede B; Lau A; Bartholomeus HM; Kooistra L Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755 [TBL] [Abstract][Full Text] [Related]
32. [A hyperspectral assessment model for leaf chlorophyll content of Pinus massoniana based on neural network]. Liu WY; Pan J Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1128-1136. PubMed ID: 29741308 [TBL] [Abstract][Full Text] [Related]
33. Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy. Chakhvashvili E; Siegmann B; Muller O; Verrelst J; Bendig J; Kraska T; Rascher U Remote Sens (Basel); 2022 Mar; 14(5):1247. PubMed ID: 36082321 [TBL] [Abstract][Full Text] [Related]
34. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China]. Yu QZ; Wang SQ; Huang K; Zhou L; Chen DC Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763 [TBL] [Abstract][Full Text] [Related]
35. Study on the Estimation of Forest Volume Based on Multi-Source Data. Hu T; Sun Y; Jia W; Li D; Zou M; Zhang M Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883798 [TBL] [Abstract][Full Text] [Related]
36. The Feasibility of Modelling the Crown Profile of Quan Y; Li M; Zhen Z; Hao Y; Wang B Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998340 [TBL] [Abstract][Full Text] [Related]
37. LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery. Shi Z; Shi S; Gong W; Xu L; Wang B; Sun J; Chen B; Xu Q Front Plant Sci; 2023; 14():1237988. PubMed ID: 37841611 [TBL] [Abstract][Full Text] [Related]
38. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data. Jing L; Wei X; Song Q; Wang F Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163 [TBL] [Abstract][Full Text] [Related]
39. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. Ge X; Wang J; Ding J; Cao X; Zhang Z; Liu J; Li X PeerJ; 2019; 7():e6926. PubMed ID: 31110930 [TBL] [Abstract][Full Text] [Related]
40. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia. Cao J; Liu H; Zhao B; Li Z; Liang B; Shi L; Wu L; Cressey EL; Quine TA Sci Total Environ; 2021 Nov; 795():148875. PubMed ID: 34247087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]