These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37681505)

  • 1. Preload-Induced Switchable Adhesion.
    Tu C; Ji K; Zhao J; Wang X; Wu J; Huo T; Ji Y; Chen J; Deng K; Dai Z
    Small; 2024 Feb; 20(5):e2305091. PubMed ID: 37681505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.
    Purtov J; Frensemeier M; Kroner E
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24127-35. PubMed ID: 26457864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Bioinspired Switchable Adhesive with Three Distinct Adhesive States.
    Isla PY; Kroner E
    Adv Funct Mater; 2015 Apr; 25(16):2444-2450. PubMed ID: 26366145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switchable Adhesion of Micropillar Adhesive on Rough Surfaces.
    Tan D; Wang X; Liu Q; Shi K; Yang B; Liu S; Wu ZS; Xue L
    Small; 2019 Dec; 15(50):e1904248. PubMed ID: 31724823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preload-responsive adhesion: effects of aspect ratio, tip shape and alignment.
    Paretkar D; Kamperman M; Martina D; Zhao J; Creton C; Lindner A; Jagota A; McMeeking R; Arzt E
    J R Soc Interface; 2013 Jun; 10(83):20130171. PubMed ID: 23554348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Touch-Responsive Hydrogels for On-Demand Adhesion on Rough Surfaces.
    Shi Z; Wang Z; Xiao K; Zhu B; Wang Y; Zhang X; Lin Z; Tan D; Xue L
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19819-19827. PubMed ID: 38564660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
    Lee J; Fearing RS
    Langmuir; 2012 Oct; 28(43):15372-7. PubMed ID: 23072291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact.
    Wang Y; Tian H; Shao J; Sameoto D; Li X; Wang L; Hu H; Ding Y; Lu B
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):10029-37. PubMed ID: 27040123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Plane Combination of Micropillars with Distinct Aspect Ratios to Resist Overload-Induced Adhesion Failure.
    Li D; Li R; Yuan K; Chen A; Guo N; Xu C; Zhang W
    Adv Sci (Weinh); 2024 Jul; 11(28):e2400972. PubMed ID: 38718307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple-Bioinspired Shape Memory Microcavities with Strong and Switchable Adhesion.
    Li Y; Liu X; Wang R; Jiao S; Liu Y; Lai H; Cheng Z
    ACS Nano; 2023 Dec; 17(23):23595-23607. PubMed ID: 37983013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy.
    Zhang Z; Qin C; Feng H; Xiang Y; Yu B; Pei X; Ma Y; Zhou F
    Nat Commun; 2022 Nov; 13(1):6964. PubMed ID: 36379942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable Adhesion for Nonflat Surfaces Mimicking Geckos' Adhesive Structures and Toe Muscles.
    Li S; Tian H; Shao J; Liu H; Wang D; Zhang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39745-39755. PubMed ID: 32666785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Self-Healing and Switchable Adhesives based on Multi-Level Dynamic Stable Structure.
    Xu H; Zhao S; Yuan A; Zhao Y; Wu X; Wei Z; Lei J; Jiang L
    Small; 2023 Jun; 19(26):e2300626. PubMed ID: 36929671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Material Properties for Practical Microstructured Adhesives: Low Dust Adhesion and High Shear Strength.
    Alizadehyazdi V; Simaite A; Spenko M
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8654-8666. PubMed ID: 30715840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Film-Terminated Fibrillar Microstructures with Improved Adhesion on Skin-like Surfaces.
    Moreira Lana G; Zhang X; Müller C; Hensel R; Arzt E
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46239-46251. PubMed ID: 36195314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile Adhesion-Based Gripping via an Unstructured Variable Stiffness Membrane.
    Luo A; Pande SS; Turner KT
    Soft Robot; 2022 Dec; 9(6):1177-1185. PubMed ID: 35834559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion.
    Ma Y; Ma S; Wu Y; Pei X; Gorb SN; Wang Z; Liu W; Zhou F
    Adv Mater; 2018 Jul; 30(30):e1801595. PubMed ID: 29921014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillarity-based switchable adhesion.
    Vogel MJ; Steen PH
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3377-81. PubMed ID: 20133725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Adhesion.
    Wang Z
    ACS Nano; 2018 Feb; 12(2):1273-1284. PubMed ID: 29357229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired fibrillar adhesives with shape-controlled off-center caps for switchable and directional adhesion.
    Geikowsky E; Aksak B
    Bioinspir Biomim; 2020 Jul; 15(5):056007. PubMed ID: 32697767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.