These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3768199)

  • 1. Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength.
    Mosekilde L; Mosekilde L
    Bone; 1986; 7(3):207-12. PubMed ID: 3768199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals.
    Mosekilde L; Viidik A; Mosekilde L
    Bone; 1985; 6(5):291-5. PubMed ID: 4096861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iliac crest trabecular bone volume as predictor for vertebral compressive strength, ash density and trabecular bone volume in normal individuals.
    Mosekilde L; Mosekilde L
    Bone; 1988; 9(4):195-9. PubMed ID: 3166835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density.
    Mosekilde L; Bentzen SM; Ortoft G; Jørgensen J
    Bone; 1989; 10(6):465-70. PubMed ID: 2624829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical competence of iliac crest trabecular bone in autosomal dominant osteopetrosis type I.
    Bollerslev J; Mosekilde L; Nielsen HK; Mosekilde L
    Bone; 1989; 10(3):159-64. PubMed ID: 2803852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of vertebral body strength by dual photon absorptiometry in elderly individuals: comparison between measurements of total vertebral and vertebral body bone mineral.
    Ortoft G; Mosekilde L; Hasling C; Mosekilde L
    Bone; 1993; 14(4):667-73. PubMed ID: 8274311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Jan; 30(1):267-74. PubMed ID: 11792596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age- and gender-related differences in vertebral bone mass, density, and strength.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    J Bone Miner Res; 1999 Aug; 14(8):1394-403. PubMed ID: 10457272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus.
    Amling M; Herden S; Pösl M; Hahn M; Ritzel H; Delling G
    J Bone Miner Res; 1996 Jan; 11(1):36-45. PubMed ID: 8770695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine.
    Dempster DW; Ferguson-Pell MW; Mellish RW; Cochran GV; Xie F; Fey C; Horbert W; Parisien M; Lindsay R
    Osteoporos Int; 1993 Mar; 3(2):90-6. PubMed ID: 8453196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between 2- and 3-dimensional architecture of trabecular bone in the human spine.
    Vogel M; Hahn M; Delling G
    Bone; 1993; 14(3):199-203. PubMed ID: 8363857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between radiographic trabecular pattern and biomechanical characteristics of human vertebrae.
    Korstjens CM; Mosekilde L; Spruijt RJ; Geraets WG; van der Stelt PF
    Acta Radiol; 1996 Sep; 37(5):618-24. PubMed ID: 8915263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae.
    Vesterby A; Mosekilde L; Gundersen HJ; Melsen F; Mosekilde L; Holme K; Sørensen S
    Bone; 1991; 12(3):219-24. PubMed ID: 1910963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.