BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37682473)

  • 1. Identification of Plant Transcription Factor DNA-Binding Sites Using seq-DAP-seq.
    Hutin S; Blanc-Mathieu R; Rieu P; Parcy F; Lai X; Zubieta C
    Methods Mol Biol; 2023; 2698():119-145. PubMed ID: 37682473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DAP-Seq Identification of Transcription Factor-Binding Sites in Potato.
    Franco-Zorrilla JM; Prat S
    Methods Mol Biol; 2021; 2354():123-142. PubMed ID: 34448158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping genome-wide transcription-factor binding sites using DAP-seq.
    Bartlett A; O'Malley RC; Huang SC; Galli M; Nery JR; Gallavotti A; Ecker JR
    Nat Protoc; 2017 Aug; 12(8):1659-1672. PubMed ID: 28726847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing.
    Lai X; Stigliani A; Lucas J; Hugouvieux V; Parcy F; Zubieta C
    Nucleic Acids Res; 2020 Sep; 48(17):9637-9648. PubMed ID: 32890394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape.
    O'Malley RC; Huang SC; Song L; Lewsey MG; Bartlett A; Nery JR; Galli M; Gallavotti A; Ecker JR
    Cell; 2016 May; 165(5):1280-1292. PubMed ID: 27203113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DamID-seq: A Genome-Wide DNA Methylation Method that Captures Both Transient and Stable TF-DNA Interactions in Plant Cells.
    Alvarez JM; Hinckley WE; Leonelli L; Brooks MD; Coruzzi GM
    Methods Mol Biol; 2023; 2698():87-107. PubMed ID: 37682471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors.
    Li M; Yao T; Lin W; Hinckley WE; Galli M; Muchero W; Gallavotti A; Chen JG; Huang SC
    Nat Commun; 2023 May; 14(1):2600. PubMed ID: 37147307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of transcription factor-binding sites in yeast using ChIP-Seq.
    Lefrançois P; Gallagher JE; Snyder M
    Methods Mol Biol; 2014; 1205():231-55. PubMed ID: 25213249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the role of MADS transcription factor complexes in apple tree dormancy.
    da Silveira Falavigna V; Severing E; Lai X; Estevan J; Farrera I; Hugouvieux V; Revers LF; Zubieta C; Coupland G; Costes E; Andrés F
    New Phytol; 2021 Dec; 232(5):2071-2088. PubMed ID: 34480759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Database for Plant Transcription Factor Binding Sites.
    Chang WC; Chow CN
    Methods Mol Biol; 2023; 2594():173-183. PubMed ID: 36264496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the New GmJAG1 Transcription Factor Binding Motifs Using DAP-Seq.
    Wang J; Pu Z; Zhang W; Qu M; Gao L; Pan W; Sun Y; Fu C; Zhang L; Huang M; Hu Y
    Plants (Basel); 2024 Jun; 13(12):. PubMed ID: 38931140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine.
    Orduña L; Li M; Navarro-Payá D; Zhang C; Santiago A; Romero P; Ramšak Ž; Magon G; Höll J; Merz P; Gruden K; Vannozzi A; Cantu D; Bogs J; Wong DCJ; Huang SC; Matus JT
    Plant J; 2022 Apr; 110(2):529-547. PubMed ID: 35092714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AIDmut-Seq: a Three-Step Method for Detecting Protein-DNA Binding Specificity.
    Li F; Liu XY; Ni L; Jin F
    Microbiol Spectr; 2023 Feb; 11(1):e0378322. PubMed ID: 36533916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.