BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37682477)

  • 1. Building High-Confidence Gene Regulatory Networks by Integrating Validated TF-Target Gene Interactions Using ConnecTF.
    Huang J; Katari MS; Juang CL; Coruzzi GM; Brooks MD
    Methods Mol Biol; 2023; 2698():195-220. PubMed ID: 37682477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ConnecTF: A platform to integrate transcription factor-gene interactions and validate regulatory networks.
    Brooks MD; Juang CL; Katari MS; Alvarez JM; Pasquino A; Shih HJ; Huang J; Shanks C; Cirrone J; Coruzzi GM
    Plant Physiol; 2021 Feb; 185(1):49-66. PubMed ID: 33631799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
    Huang J; Zheng J; Yuan H; McGinnis K
    BMC Plant Biol; 2018 Jun; 18(1):111. PubMed ID: 29879919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network component analysis provides quantitative insights on an Arabidopsis transcription factor-gene regulatory network.
    Misra A; Sriram G
    BMC Syst Biol; 2013 Nov; 7():126. PubMed ID: 24228871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information.
    Liu Q; Tan Y; Huang T; Ding G; Tu Z; Liu L; Li Y; Dai H; Xie L
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S5. PubMed ID: 21172055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimming of mammalian transcriptional networks using network component analysis.
    Tran LM; Hyduke DR; Liao JC
    BMC Bioinformatics; 2010 Oct; 11():511. PubMed ID: 20942926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systems Biology Approach To Disentangle the Direct and Indirect Effects of Global Transcription Factors on Gene Expression in Escherichia coli.
    Iyer MS; Pal A; Venkatesh KV
    Microbiol Spectr; 2023 Feb; 11(2):e0210122. PubMed ID: 36749045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.
    Potier D; Davie K; Hulselmans G; Naval Sanchez M; Haagen L; Huynh-Thu VA; Koldere D; Celik A; Geurts P; Christiaens V; Aerts S
    Cell Rep; 2014 Dec; 9(6):2290-303. PubMed ID: 25533349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TARGET System: Rapid Identification of Direct Targets of Transcription Factors by Gene Regulation in Plant Cells.
    Brooks MD; Reed KM; Krouk G; Coruzzi GM; Bargmann BOR
    Methods Mol Biol; 2023; 2594():1-12. PubMed ID: 36264484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transcriptional dynamic network during Arabidopsis thaliana pollen development.
    Wang J; Qiu X; Li Y; Deng Y; Shi T
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S8. PubMed ID: 22784627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UniBind: maps of high-confidence direct TF-DNA interactions across nine species.
    Puig RR; Boddie P; Khan A; Castro-Mondragon JA; Mathelier A
    BMC Genomics; 2021 Jun; 22(1):482. PubMed ID: 34174819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atlas of regulated target genes of transcription factors (ART-TF) in human ES cells.
    Sharov AA; Nakatake Y; Wang W
    BMC Bioinformatics; 2022 Sep; 23(1):377. PubMed ID: 36114445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a high-confidence regulatory network for gene-to-NUE phenotype in field-grown rice.
    Shanks CM; Huang J; Cheng CY; Shih HS; Brooks MD; Alvarez JM; Araus V; Swift J; Henry A; Coruzzi GM
    Front Plant Sci; 2022; 13():1006044. PubMed ID: 36507422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.