BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37682480)

  • 1. Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants.
    Chau T; Timilsena P; Li S
    Methods Mol Biol; 2023; 2698():259-275. PubMed ID: 37682480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Gene Regulatory Networks from Single-Cell Expression Data.
    Li S; Yan H; Lee J
    Methods Mol Biol; 2021; 2328():153-170. PubMed ID: 34251624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of scATAC-Seq with scRNA-Seq Data.
    Berest I; Tangherloni A
    Methods Mol Biol; 2023; 2584():293-310. PubMed ID: 36495457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ScSmOP: a universal computational pipeline for single-cell single-molecule multiomics data analysis.
    Jing K; Xu Y; Yang Y; Yin P; Ning D; Huang G; Deng Y; Chen G; Li G; Tian SZ; Zheng M
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiome in the Same Cell Reveals the Impact of Osmotic Stress on Arabidopsis Root Tip Development at Single-Cell Level.
    Liu Q; Ma W; Chen R; Li ST; Wang Q; Wei C; Hong Y; Sun HX; Cheng Q; Zhao J; Kang J
    Adv Sci (Weinh); 2024 Jun; 11(24):e2308384. PubMed ID: 38634607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of condition-specific regulatory genes using machine learning.
    Song Q; Lee J; Akter S; Rogers M; Grene R; Li S
    Nucleic Acids Res; 2020 Jun; 48(11):e62. PubMed ID: 32329779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration.
    Li Y; Zhang D; Yang M; Peng D; Yu J; Liu Y; Lv J; Chen L; Peng X
    Nat Commun; 2023 Sep; 14(1):6045. PubMed ID: 37770437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of new marker genes from plant single-cell RNA-seq data using interpretable machine learning methods.
    Yan H; Lee J; Song Q; Li Q; Schiefelbein J; Zhao B; Li S
    New Phytol; 2022 May; 234(4):1507-1520. PubMed ID: 35211979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning single-cell chromatin accessibility profiles using meta-analytic marker genes.
    Kawaguchi RK; Tang Z; Fischer S; Rajesh C; Tripathy R; Koo PK; Gillis J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36549922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Practical Guide to Inferring Multi-Omics Networks in Plant Systems.
    Clark NM; Hurgobin B; Kelley DR; Lewsey MG; Walley JW
    Methods Mol Biol; 2023; 2698():233-257. PubMed ID: 37682479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling.
    Sun B; Bugarin-Estrada E; Overend LE; Walker CE; Tucci FA; Bashford-Rogers RJM
    Cell Rep Methods; 2021 May; 1(1):None. PubMed ID: 34278374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data.
    Xiao C; Chen Y; Meng Q; Wei L; Zhang X
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38493343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of classification in single cell atac-seq data with machine learning methods.
    Guo H; Yang Z; Jiang T; Liu S; Wang Y; Cui Z
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):249. PubMed ID: 36131234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell multi-omics analysis reveals dysfunctional Wnt signaling of spermatogonia in non-obstructive azoospermia.
    Zeng S; Chen L; Liu X; Tang H; Wu H; Liu C
    Front Endocrinol (Lausanne); 2023; 14():1138386. PubMed ID: 37334314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional inference of gene regulation using single-cell multi-omics.
    Kartha VK; Duarte FM; Hu Y; Ma S; Chew JG; Lareau CA; Earl A; Burkett ZD; Kohlway AS; Lebofsky R; Buenrostro JD
    Cell Genom; 2022 Sep; 2(9):. PubMed ID: 36204155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles.
    Jiang J; Lyu P; Li J; Huang S; Tao J; Blackshaw S; Qian J; Wang J
    iScience; 2022 Nov; 25(11):105359. PubMed ID: 36325073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.