These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37682627)

  • 41. Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection.
    Nie L; Zeng X; Li H; Wang S; Yu R
    Talanta; 2024 Jan; 266(Pt 1):125023. PubMed ID: 37549569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-sensitive sensing of plant microRNA by integrating click chemistry with an unusual on-bead poly(T)-promoted transcription amplification.
    Wang G; Fan W; Ren W; Liu X; Liu C
    Anal Chim Acta; 2020 May; 1111():16-22. PubMed ID: 32312392
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of Genetically Encoded Light-Up RNA Aptamers for Label-free and Ultrasensitive Detection of CircRNAs in Cancer Cells and Tissues.
    Zhao NN; Li FZ; Zhang X; Liu M; Cao H; Zhang CY
    Anal Chem; 2023 Jun; 95(22):8728-8734. PubMed ID: 37218166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Label-free detection of microRNA: two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters.
    Li M; Xu X; Zhou Z; Xu G; Xie Y; Cai Q
    Mikrochim Acta; 2020 Jan; 187(2):141. PubMed ID: 31965324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. T7 exo-mediated FRET-breaking combined with DSN-RNAse-TdT for the detection of microRNA with ultrahigh signal-amplification.
    Nguyen VT; Le BH; Seo YJ
    Analyst; 2019 May; 144(10):3216-3220. PubMed ID: 30984925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine.
    He JL; Wu ZS; Zhou H; Wang HQ; Jiang JH; Shen GL; Yu RQ
    Anal Chem; 2010 Feb; 82(4):1358-64. PubMed ID: 20078091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection.
    Wang Z; Xue Z; Hao X; Miao C; Zhang J; Zheng Y; Zheng Z; Lin X; Weng S
    Anal Chim Acta; 2020 Mar; 1103():212-219. PubMed ID: 32081186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification.
    Tang S; Gu Y; Lu H; Dong H; Zhang K; Dai W; Meng X; Yang F; Zhang X
    Anal Chim Acta; 2018 Apr; 1004():1-9. PubMed ID: 29329703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
    Kikuchi N; Reed A; Gerasimova YV; Kolpashchikov DM
    Anal Chem; 2019 Feb; 91(4):2667-2671. PubMed ID: 30680988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly.
    Yin N; Yuan S; Zhang M; Wang J; Li Y; Peng Y; Bai J; Ning B; Liang J; Gao Z
    Mikrochim Acta; 2019 Nov; 186(12):765. PubMed ID: 31713694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection.
    He CZ; Zhang KH; Wang T; Wan QS; Hu PP; Hu MD; Huang DQ; Lv NH
    Anal Biochem; 2013 Sep; 440(1):63-70. PubMed ID: 23711720
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.
    Hu K; Liu J; Chen J; Huang Y; Zhao S; Tian J; Zhang G
    Biosens Bioelectron; 2013 Apr; 42():598-602. PubMed ID: 23261695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure.
    Cai R; Yin F; Chen H; Tian Y; Zhou N
    Mikrochim Acta; 2020 Apr; 187(5):304. PubMed ID: 32350613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A T7 exonuclease assisted dual-cycle signal amplification assay of miRNA using nanospheres-enhanced fluorescence polarization.
    Li X; Huang N; Zhang L; Zhao J; Zhao S
    Talanta; 2019 Sep; 202():297-302. PubMed ID: 31171185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitive fluorescent aptasensing of tobramycin on graphene oxide coupling strand displacement amplification and hybridization chain reaction.
    Li D; Ling S; Meng D; Zhou B; Liang P; Lv B
    Int J Biol Macromol; 2022 Nov; 220():1287-1293. PubMed ID: 36037911
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isothermal detection of lncRNA using T7 RNA polymerase mediated amplification coupled with fluorescence-based sensor.
    Khoothiam K; Boonbanjong P; Iempridee T; Luksirikul P; Japrung D
    Anal Biochem; 2021 Sep; 629():114212. PubMed ID: 33872579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A highly sensitive and versatile transcription immunoassay using a DNA-encoding tandem repetitive light-up aptamer.
    Sim J; Baek MS; Lee KH; Kim DM; Byun JY; Shin YB
    Talanta; 2021 Mar; 224():121921. PubMed ID: 33379122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrasensitive, rapid, and highly specific detection of microRNAs based on PER-CRISPR/CAS.
    Wang Z; Wei H; Bu S; Li X; Zhou H; Zhang W; Wan J
    Bioorg Med Chem Lett; 2022 Oct; 74():128949. PubMed ID: 35998847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.