These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37682640)

  • 1. Combining SILCS and Artificial Intelligence for High-Throughput Prediction of the Passive Permeability of Drug Molecules.
    Pandey P; MacKerell AD
    J Chem Inf Model; 2023 Sep; 63(18):5903-5915. PubMed ID: 37682640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
    Raman EP; Yu W; Lakkaraju SK; MacKerell AD
    J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
    Yu W; Weber DJ; MacKerell AD
    J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Group Distributions, Partition Coefficients, and Resistance Factors in Lipid Bilayers Using Site Identification by Ligand Competitive Saturation.
    Lind C; Pandey P; Pastor RW; MacKerell AD
    J Chem Theory Comput; 2021 May; 17(5):3188-3202. PubMed ID: 33929848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations.
    Mousaei M; Kudaibergenova M; MacKerell AD; Noskov S
    J Chem Inf Model; 2020 Dec; 60(12):6489-6501. PubMed ID: 33196188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly predictive and interpretable models for PAMPA permeability.
    Sun H; Nguyen K; Kerns E; Yan Z; Yu KR; Shah P; Jadhav A; Xu X
    Bioorg Med Chem; 2017 Feb; 25(3):1266-1276. PubMed ID: 28082071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation.
    Goel H; Hazel A; Ustach VD; Jo S; Yu W; MacKerell AD
    Chem Sci; 2021 Jul; 12(25):8844-8858. PubMed ID: 34257885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization.
    Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD
    J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories.
    Zhang S; Thompson JP; Xia J; Bogetti AT; York F; Skillman AG; Chong LT; LeBard DN
    J Chem Inf Model; 2022 Apr; 62(8):1891-1904. PubMed ID: 35421313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).
    MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.
    Kognole AA; Hazel A; MacKerell AD
    J Chem Theory Comput; 2022 Sep; 18(9):5672-5691. PubMed ID: 35913731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hERG Blockade Prediction by Combining Site Identification by Ligand Competitive Saturation and Physicochemical Properties.
    Goel H; Yu W; MacKerell AD
    Chemistry (Basel); 2022 Sep; 4(3):630-646. PubMed ID: 36712295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
    Zhao M; Yu W; MacKerell AD
    J Phys Chem B; 2024 Aug; 128(30):7362-7375. PubMed ID: 39031121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates.
    Radan M; Djikic T; Obradovic D; Nikolic K
    Eur J Pharm Sci; 2022 Jan; 168():106056. PubMed ID: 34740787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).
    Petit C; Bujard A; Skalicka-Woźniak K; Cretton S; Houriet J; Christen P; Carrupt PA; Wolfender JL
    Planta Med; 2016 Mar; 82(5):424-31. PubMed ID: 26872320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.
    Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.