These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 37682649)
1. An Adaptation-Aware Interactive Learning Approach for Multiple Operational Condition-Based Degradation Modeling. Wang D; Wang Y; Xian X; Cheng B IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37682649 [TBL] [Abstract][Full Text] [Related]
2. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D; Xian X; Song C IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [TBL] [Abstract][Full Text] [Related]
3. Interactive Prognosis Framework Between Deep Learning and a Stochastic Process Model for Remaining Useful Life Prediction. Pei H; Si X; Li T; Zhang Z; Lei Y IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725744 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings. Kamat PV; Sugandhi R; Kumar S PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464 [TBL] [Abstract][Full Text] [Related]
5. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)]. ; ; Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959 [TBL] [Abstract][Full Text] [Related]
6. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines. Sánchez Lasheras F; García Nieto PJ; de Cos Juez FJ; Mayo Bayón R; González Suárez VM Sensors (Basel); 2015 Mar; 15(3):7062-83. PubMed ID: 25806876 [TBL] [Abstract][Full Text] [Related]
7. Aircraft Engine Prognostics Based on Informative Sensor Selection and Adaptive Degradation Modeling with Functional Principal Component Analysis. Zhang B; Zheng K; Huang Q; Feng S; Zhou S; Zhang Y Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050483 [TBL] [Abstract][Full Text] [Related]
8. Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data. Liu S; Jiang H Heliyon; 2023 Jun; 9(6):e17118. PubMed ID: 37389066 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Degradation Equipment Remaining Useful Life Prediction Oriented Parallel Simulation considering Model Soft Switch. Ge C; Zhu Y; Di Y Comput Intell Neurosci; 2019; 2019():9179870. PubMed ID: 30992700 [TBL] [Abstract][Full Text] [Related]
10. An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction. Huang L; Pan X; Liu Y; Gong L Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631775 [TBL] [Abstract][Full Text] [Related]
11. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network. Sun S; Peng T; Huang H Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579 [TBL] [Abstract][Full Text] [Related]
12. A Digital-Twin Framework for Predicting the Remaining Useful Life of Piezoelectric Vibration Sensors with Sensitivity Degradation Modeling. Fu C; Gao C; Zhang W Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837003 [TBL] [Abstract][Full Text] [Related]
13. A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine Remaining Useful Life Prediction. Fan Z; Li W; Chang KC Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339540 [TBL] [Abstract][Full Text] [Related]
14. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing. Yang C; Ma J; Wang X; Li X; Li Z; Luo T ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998 [TBL] [Abstract][Full Text] [Related]
15. Method for Predicting RUL of Rolling Bearings under Different Operating Conditions Based on Transfer Learning and Few Labeled Data. Sun W; Wang H; Liu Z; Qu R Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616826 [TBL] [Abstract][Full Text] [Related]
16. Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning. Li X; Zhang W; Ma H; Luo Z; Li X IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5480-5491. PubMed ID: 33852404 [TBL] [Abstract][Full Text] [Related]
17. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Verstraete D; Droguett E; Modarres M Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31892260 [TBL] [Abstract][Full Text] [Related]
18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
19. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Liu L; Zhang Z; Li S; Ma K; Zheng Y Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837 [TBL] [Abstract][Full Text] [Related]
20. Dual-frequency enhanced attention network for aircraft engine remaining useful life prediction. Yang Q; Tang B; Li Q; Liu X; Bao L ISA Trans; 2023 Oct; 141():167-183. PubMed ID: 37423886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]