These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37682659)

  • 1. First-Principles Investigation of Nucleobase Detection by Tetranitrogen Coordinated Transition Metal Doped Graphene Nanoribbons.
    Nie Y; Yu Z; Li Y
    J Phys Chem B; 2023 Sep; 127(37):7899-7906. PubMed ID: 37682659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O₂ and O Adsorption: A First-Principles Investigation.
    Chu M; Liu X; Sui Y; Luo J; Meng C
    Molecules; 2015 Oct; 20(10):19540-53. PubMed ID: 26516830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleobases-decorated boron nitride nanoribbons for electrochemical biosensing: a dispersion-corrected DFT study.
    Dabhi SD; Roondhe B; Jha PK
    Phys Chem Chem Phys; 2018 Mar; 20(13):8943-8950. PubMed ID: 29557430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene nanoribbons: A state-of-the-art in health care.
    Shende P; Pathan N
    Int J Pharm; 2021 Feb; 595():120269. PubMed ID: 33486033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobase-Bonded Graphene Nanoribbon Junctions: Electron Transport from First Principles.
    Huang Y; Altalhi T; Yakobson BI; Penev ES
    ACS Nano; 2022 Oct; 16(10):16736-16743. PubMed ID: 36198132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach.
    R D; Verma A; Choudhary BC; Sharma RK
    J Mol Graph Model; 2022 Mar; 111():108109. PubMed ID: 34952481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Graphdiyne Nanoribbons for Molecular Electronics Spectroscopy and Nucleobase Identification: A Theoretical Investigation.
    Rezapour MR; Biel B
    ACS Appl Electron Mater; 2024 Feb; 6(2):1244-1251. PubMed ID: 38435805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs).
    Sadeghi MH; Tofighy MA; Mohammadi T
    Chemosphere; 2020 Aug; 253():126647. PubMed ID: 32276119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels.
    Elías AL; Botello-Méndez AR; Meneses-Rodríguez D; Jehová González V; Ramírez-González D; Ci L; Muñoz-Sandoval E; Ajayan PM; Terrones H; Terrones M
    Nano Lett; 2010 Feb; 10(2):366-72. PubMed ID: 19691280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device.
    Kumawat RL; Pathak B
    Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Cisplatin on Oxidized Graphene Nanoribbons for Improving the Uptake in Non-small Cell Lung Carcinoma Cell Line A549.
    Augustine S; Prabhakar B; Shende P
    Curr Drug Deliv; 2022; 19(6):697-705. PubMed ID: 34238188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory analysis of selective adsorption of AsH
    Li Y; Sun X; Zhou L; Ning P; Tang L
    J Mol Model; 2019 May; 25(5):145. PubMed ID: 31055650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive electrochemical immunosensor for the detection of alpha fetoprotein based on PdNi nanoparticles and N-doped graphene nanoribbons.
    Li N; Ma H; Cao W; Wu D; Yan T; Du B; Wei Q
    Biosens Bioelectron; 2015 Dec; 74():786-91. PubMed ID: 26232003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons.
    Sevinçli H; Sevik C; Caın T; Cuniberti G
    Sci Rep; 2013; 3():1228. PubMed ID: 23390578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe
    Sadrnia A; Orooji Y; Behmaneshfar A; Darabi R; Maghsoudlou Kamali D; Karimi-Maleh H; Opoku F; Govender PP
    Environ Res; 2021 Sep; 200():111522. PubMed ID: 34129863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Covid-19 through a Heptanal Biomarker Using Transition Metal Doped Graphene.
    Zhu A; Luo X
    J Phys Chem B; 2022 Jan; 126(1):151-160. PubMed ID: 34982559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons.
    Kim H; Lee K; Woo SI; Jung Y
    Phys Chem Chem Phys; 2011 Oct; 13(39):17505-10. PubMed ID: 21946759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.