These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37682659)

  • 21. Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing.
    Paulechka E; Wassenaar TA; Kroenlein K; Kazakov A; Smolyanitsky A
    Nanoscale; 2016 Jan; 8(4):1861-7. PubMed ID: 26731166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene Oxide Nanoribbons in Chitosan for Simultaneous Electrochemical Detection of Guanine, Adenine, Thymine and Cytosine.
    Zhou J; Li S; Noroozifar M; Kerman K
    Biosensors (Basel); 2020 Mar; 10(4):. PubMed ID: 32230779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Dipole-Driven Electronic Structure Modifications of DNA/RNA Nucleobases on Graphene.
    Yin Y; Cervenka J; Medhekar NV
    J Phys Chem Lett; 2017 Jul; 8(13):3087-3094. PubMed ID: 28628335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards a graphene semi/hybrid-nanogap: a new architecture for ultrafast DNA sequencing.
    Mittal S; Pathak B
    Nanoscale; 2023 Jan; 15(2):757-767. PubMed ID: 36525055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Referenced Refractive Index Biosensing with Graphene Fano Resonance Modes.
    Dai X; Ruan B; Xiang Y
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origin of dips for the graphene-based DNA sequencing device.
    Cho Y; Min SK; Kim WY; Kim KS
    Phys Chem Chem Phys; 2011 Aug; 13(32):14293-6. PubMed ID: 21617796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles.
    Abdulkader Tawfik S; Cui XY; Carter DJ; Ringer SP; Stampfl C
    Phys Chem Chem Phys; 2015 Mar; 17(10):6925-32. PubMed ID: 25679359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine.
    Rostami S; Mehdinia A; Jabbari A
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111034. PubMed ID: 32994022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
    Asai M; Ohba T; Iwanaga T; Kanoh H; Endo M; Campos-Delgado J; Terrones M; Nakai K; Kaneko K
    J Am Chem Soc; 2011 Sep; 133(38):14880-3. PubMed ID: 21870827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution.
    Li YL; Zee CT; Lin JB; Basile VM; Muni M; Flores MD; Munárriz J; Kaner RB; Alexandrova AN; Houk KN; Tolbert SH; Rubin Y
    J Am Chem Soc; 2020 Oct; 142(42):18093-18102. PubMed ID: 32894950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local current analysis on defective zigzag graphene nanoribbons devices for biosensor material applications.
    Shao J; Paulus B; Tremblay JC
    J Comput Chem; 2021 Aug; 42(21):1475-1485. PubMed ID: 33988254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational investigation of N
    Vakili M; Gholizadeh R; Ghadi A; Salmasi E; Sinnokrot M
    J Mol Graph Model; 2020 Dec; 101():107752. PubMed ID: 32961478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of nucleobases with graphene and carbon nanotube: a review of computational studies.
    Chehel Amirani M; Tang T
    J Biomol Struct Dyn; 2015; 33(7):1567-97. PubMed ID: 25118044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The co-adsorption of sulfate and metal ions on Al-doped graphene: a first principles study.
    Zhang Y; Zhang H; Chen T; An L
    J Mol Model; 2023 Aug; 29(9):289. PubMed ID: 37612447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.
    Xu J; Cao Z; Zhang Y; Yuan Z; Lou Z; Xu X; Wang X
    Chemosphere; 2018 Mar; 195():351-364. PubMed ID: 29272803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
    Tawfik SA; Cui XY; Ringer SP; Stampfl C
    Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.