BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37682822)

  • 1. Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model.
    Phuoc HD; Hoang PN; Yang S; Fraser D; Nguyen VT
    PLoS One; 2023; 18(9):e0282457. PubMed ID: 37682822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining trabecular morphology and chemical composition of peri-scaffold osseointegrated bone.
    Lyu L; Yang S; Jing Y; Zhang C; Wang J
    J Orthop Surg Res; 2020 Sep; 15(1):406. PubMed ID: 32928246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti
    Liu H; Li W; Liu C; Tan J; Wang H; Hai B; Cai H; Leng HJ; Liu ZJ; Song CL
    Biofabrication; 2016 Oct; 8(4):045012. PubMed ID: 27788122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography.
    Baril E; Lefebvre LP; Hacking SA
    J Mater Sci Mater Med; 2011 May; 22(5):1321-32. PubMed ID: 21512898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does implantation site influence bone ingrowth into 3D-printed porous implants?
    Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ
    Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different structures fabricated by additive manufacturing on bone ingrowth.
    Lu S; Jiang D; Liu S; Liang H; Lu J; Xu H; Li J; Xiao J; Zhang J; Fei Q
    J Biomater Appl; 2022 May; 36(10):1863-1872. PubMed ID: 35227103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures.
    Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects.
    Zhang RZ; Shi Q; Zhao H; Pan GQ; Shao LH; Wang JF; Liu HW
    J Biomater Appl; 2022 Nov; 37(5):942-958. PubMed ID: 35856165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting.
    Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A
    J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.
    Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J
    Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.
    Peng W; Xu L; You J; Fang L; Zhang Q
    Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D Printed Porous Titanium Alloy Rod with Diamond Crystal Lattice for Treatment of the Early-Stage Femoral Head Osteonecrosis in Sheep.
    Wang C; Liu D; Xie Q; Liu J; Deng S; Gong K; Huang C; Yin L; Xie M; Guo Z; Zheng W
    Int J Med Sci; 2019; 16(3):486-493. PubMed ID: 30911283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel nano-hydroxyapatite coating of additively manufactured three-dimensional porous implants improves bone ingrowth and initial fixation.
    Watanabe R; Takahashi H; Matsugaki A; Uemukai T; Kogai Y; Imagama T; Yukata K; Nakano T; Sakai T
    J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):453-462. PubMed ID: 36169186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osseointegration of functionally graded Ti6Al4V porous implants: Histology of the pore network.
    Deering J; Mahmoud D; Rier E; Lin Y; do Nascimento Pereira AC; Titotto S; Fang Q; Wohl GR; Deng F; Grandfield K; Elbestawi MA; Chen J
    Biomater Adv; 2023 Dec; 155():213697. PubMed ID: 37979439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing.
    Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis.
    Zhao H; Shen S; Zhao L; Xu Y; Li Y; Zhuo N
    BMC Musculoskelet Disord; 2021 Aug; 22(1):734. PubMed ID: 34452607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro.
    Xu J; Weng XJ; Wang X; Huang JZ; Zhang C; Muhammad H; Ma X; Liao QD
    PLoS One; 2013; 8(11):e79289. PubMed ID: 24260188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.