These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37683114)

  • 1. Predictive Framework Development for User-Friendly On-Site Glucose Detection.
    Kishnani V; Gupta A
    ACS Appl Bio Mater; 2023 Oct; 6(10):4336-4344. PubMed ID: 37683114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-enzymatic colorimetric detection of hydrogen peroxide using a μPAD coupled with a machine learning-based smartphone app.
    Doğan V; Yüzer E; Kılıç V; Şen M
    Analyst; 2021 Nov; 146(23):7336-7344. PubMed ID: 34766967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-enzymatic colorimetric glucose detection based on Au/Ag nanoparticles using smartphone and machine learning.
    Kılıç V; Mercan ÖB; Tetik M; Kap Ö; Horzum N
    Anal Sci; 2022 Feb; 38(2):347-358. PubMed ID: 35314981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp.
    Min HJ; Mina HA; Deering AJ; Bae E
    J Microbiol Methods; 2021 Sep; 188():106288. PubMed ID: 34280431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartphone-based colorimetric detection via machine learning.
    Mutlu AY; Kılıç V; Özdemir GK; Bayram A; Horzum N; Solmaz ME
    Analyst; 2017 Jul; 142(13):2434-2441. PubMed ID: 28597010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A field-deployable water quality monitoring with machine learning-based smartphone colorimetry.
    Doǧan V; Isık T; Kılıç V; Horzum N
    Anal Methods; 2022 Sep; 14(35):3458-3466. PubMed ID: 36000587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of H
    Şen M; Yüzer E; Doğan V; Avcı İ; Ensarioğlu K; Aykaç A; Kaya N; Can M; Kılıç V
    Mikrochim Acta; 2022 Sep; 189(10):373. PubMed ID: 36068359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone.
    Foysal KH; Seo SE; Kim MJ; Kwon OS; Chong JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31694281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-Learning-Assisted Analysis of Colorimetric Assays on Paper Analytical Devices.
    Khanal B; Pokhrel P; Khanal B; Giri B
    ACS Omega; 2021 Dec; 6(49):33837-33845. PubMed ID: 34926930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection.
    Kishnani V; Kumari S; Gupta A
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays.
    Duan S; Cai T; Zhu J; Yang X; Lim EG; Huang K; Hoettges K; Zhang Q; Fu H; Guo Q; Liu X; Yang Z; Song P
    Anal Chim Acta; 2023 Apr; 1248():340868. PubMed ID: 36813452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MagIO: Magnetic Field Strength Based Indoor- Outdoor Detection with a Commercial Smartphone.
    Ashraf I; Hur S; Park Y
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration.
    Jung Y; Kim J; Awofeso O; Kim H; Regnier F; Bae E
    Appl Opt; 2015 Nov; 54(31):9183-9. PubMed ID: 26560572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination.
    Ra M; Muhammad MS; Lim C; Han S; Jung C; Kim WY
    IEEE J Transl Eng Health Med; 2018; 6():2800111. PubMed ID: 29333352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-assisted image label-free smartphone platform for rapid segmentation and robust multi-urinalysis.
    Xu Q; Yan R; Gui X; Song R; Wang X
    Anal Bioanal Chem; 2024 Mar; 416(6):1443-1455. PubMed ID: 38228897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites.
    Kumar A; Jain D; Bahuguna J; Bhaiyya M; Dubey SK; Javed A; Goel S
    Biosens Bioelectron; 2023 Oct; 238():115582. PubMed ID: 37572409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated tongue diagnosis on the smartphone and its applications.
    Hu MC; Lan KC; Fang WC; Huang YC; Ho TJ; Lin CP; Yeh MH; Raknim P; Lin YH; Cheng MH; He YT; Tseng KC
    Comput Methods Programs Biomed; 2019 Jun; 174():51-64. PubMed ID: 29307471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Cataract Using Smartphones.
    Askarian B; Ho P; Chong JW
    IEEE J Transl Eng Health Med; 2021; 9():3800110. PubMed ID: 34786216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.