These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37683188)
1. Design of New Inorganic Crystals with the Desired Composition Using Deep Learning. Han S; Lee J; Han S; Moosavi SM; Kim J; Park C J Chem Inf Model; 2023 Sep; 63(18):5755-5763. PubMed ID: 37683188 [TBL] [Abstract][Full Text] [Related]
2. Computational Discovery of New 2D Materials Using Deep Learning Generative Models. Song Y; Siriwardane EMD; Zhao Y; Hu J ACS Appl Mater Interfaces; 2021 Nov; 13(45):53303-53313. PubMed ID: 33985329 [TBL] [Abstract][Full Text] [Related]
4. Generative Design of Inorganic Compounds Using Deep Diffusion Language Models. Dong R; Fu N; Siriwardane EMD; Hu J J Phys Chem A; 2024 Jul; 128(29):5980-5989. PubMed ID: 39008628 [TBL] [Abstract][Full Text] [Related]
5. Inverse Design of Next-Generation Superconductors Using Data-Driven Deep Generative Models. Wines D; Xie T; Choudhary K J Phys Chem Lett; 2023 Jul; 14(29):6630-6638. PubMed ID: 37462366 [TBL] [Abstract][Full Text] [Related]
6. A universal graph deep learning interatomic potential for the periodic table. Chen C; Ong SP Nat Comput Sci; 2022 Nov; 2(11):718-728. PubMed ID: 38177366 [TBL] [Abstract][Full Text] [Related]
7. Crystal Composition Transformer: Self-Learning Neural Language Model for Generative and Tinkering Design of Materials. Wei L; Li Q; Song Y; Stefanov S; Dong R; Fu N; Siriwardane EMD; Chen F; Hu J Adv Sci (Weinh); 2024 Sep; 11(36):e2304305. PubMed ID: 39101275 [TBL] [Abstract][Full Text] [Related]
8. High-Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks. Zhao Y; Al-Fahdi M; Hu M; Siriwardane EMD; Song Y; Nasiri A; Hu J Adv Sci (Weinh); 2021 Oct; 8(20):e2100566. PubMed ID: 34351707 [TBL] [Abstract][Full Text] [Related]
10. Novel inorganic crystal structures predicted using autonomous simulation agents. Ye W; Lei X; Aykol M; Montoya JH Sci Data; 2022 Jun; 9(1):302. PubMed ID: 35701432 [TBL] [Abstract][Full Text] [Related]
11. Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models. Hirte AU; Platscher M; Joyce T; Heit JJ; Tranvinh E; Federau C Magn Reson Imaging; 2021 Sep; 81():60-66. PubMed ID: 34116133 [TBL] [Abstract][Full Text] [Related]
12. Clustering Analysis via Deep Generative Models With Mixture Models. Yang L; Fan W; Bouguila N IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):340-350. PubMed ID: 33048769 [TBL] [Abstract][Full Text] [Related]
13. Deep Generative Models for Molecular Science. Jørgensen PB; Schmidt MN; Winther O Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647 [TBL] [Abstract][Full Text] [Related]
14. Deep neural networks for accurate predictions of crystal stability. Ye W; Chen C; Wang Z; Chu IH; Ong SP Nat Commun; 2018 Sep; 9(1):3800. PubMed ID: 30228262 [TBL] [Abstract][Full Text] [Related]
15. Conditional Molecular Design with Deep Generative Models. Kang S; Cho K J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587 [TBL] [Abstract][Full Text] [Related]