BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37683365)

  • 1. Study of Rayleigh waves interaction with a spherical ball in contact with a plane surface for the development of new NDT method for ball bearings.
    Bouzzit A; Martinez L; Arciniegas A; Hebaz SE; Wilkie-Chancellier N
    Ultrasonics; 2024 Jan; 136():107156. PubMed ID: 37683365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of spurious bulk waves in ball surface wave device.
    Ishikawa S; Cho H; Tsukahara Y; Nakaso N; Yamanaka K
    Ultrasonics; 2003 Jan; 41(1):1-8. PubMed ID: 12464407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects.
    Ghafoor I; Tse PW; Rostami J; Ng KM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattered Ultrasonic Guided Waves Characterized by Wave Damage Interaction Coefficients: Numerical and Experimental Investigations.
    Humer C; Höll S; Kralovec C; Schagerl M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative Rayleigh wave excitation method using an ultrasonic phased array.
    Verma B; Bélanger P
    Ultrasonics; 2023 Dec; 135():107121. PubMed ID: 37572395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel 3D evaluation method for surface defects using broadband laser-generated Rayleigh waves with wavenumber analysis.
    Cheng Q; He J; Yang S; Xiong X; Luo Y
    Ultrasonics; 2024 Mar; 138():107258. PubMed ID: 38335921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Crack Monitoring by Rayleigh Waves with a Piezoelectric-Polymer-Film Ultrasonic Transducer Array.
    Li X; Wong VK; Yousry YM; Lim DBK; Christopher Subhodayam PT; Yao K; Feng L; Qian X; Fan Z
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface circular-arc defects interacted by laser-generated Rayleigh wave.
    Zhang Z; Zhao J; Pan Y
    Ultrasonics; 2020 Apr; 103():106085. PubMed ID: 32062179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.
    Lin CI; Lee YC
    Ultrasonics; 2014 Aug; 54(6):1488-94. PubMed ID: 24796246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Finite Element Simulation of a Novel 3D-CMUT Device for Simultaneous Sensing of In-Plane and Out-of-Plane Displacements of Ultrasonic Guided Waves.
    Zhang S; Lu W; Wang A; Hao G; Wang R; Yilmaz M
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.
    Harb MS; Yuan FG
    Ultrasonics; 2016 Jan; 64():162-9. PubMed ID: 26385842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface acoustic wave attenuation in polycrystals: Numerical modeling using a statistical digital twin of an actual sample.
    Grabec T; Veres IA; Ryzy M
    Ultrasonics; 2022 Feb; 119():106585. PubMed ID: 34598096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of eastward propagating waves on the spherical Earth.
    Garfinkel CI; Fouxon I; Shamir O; Paldor N
    Q J R Meteorol Soc; 2017 Apr; 143(704):1554-1564. PubMed ID: 31423027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and inverse problems for surface acoustic waves in anisotropic media: a Ritz-Rayleigh method based approach.
    Stoklasová P; Sedlák P; Seiner H; Landa M
    Ultrasonics; 2015 Feb; 56():381-9. PubMed ID: 25260488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rayleigh wave scattering from sessile droplets.
    Quintero R; Simonetti F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043011. PubMed ID: 24229280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Approach to Size Sub-Wavelength Surface Crack Measurements Using Rayleigh Waves Based on Laser Ultrasounds.
    Li H; Pan Q; Zhang X; An Z
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed Rayleigh wave scattered at a surface crack.
    Jian X; Dixon S; Guo N; Edwards RS; Potter M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1131-4. PubMed ID: 16797641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder.
    Mitri FG
    Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Gabor analysis of transient waves propagating along an AT cut quartz disk.
    Martinez L; Goossens J; Glorieux C; Wilkie-Chancellier N; Ehssein CO; Serfaty S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1173-7. PubMed ID: 16989882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.