These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37683375)

  • 1. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data.
    Kang X; Power C; Kokkinaki A; Revil A; Wu J; Shi X; Deng Y
    J Contam Hydrol; 2023 Sep; 258():104240. PubMed ID: 37683375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture.
    Guo Q; Shi X; Kang X; Chang Y; Wang P; Wu J
    J Contam Hydrol; 2021 Aug; 241():103809. PubMed ID: 33866142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNAPL flow and complex electrical resistivity evolution in saturated porous media: A coupled numerical simulation.
    Koohbor B; Deparis J; Leroy P; Ataie-Ashtiani B; Davarzani H; Colombano S
    J Contam Hydrol; 2022 Jun; 248():104003. PubMed ID: 35413585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping and monitoring dense non-aqueous phase liquid source zone by fused surface and cross-borehole electrical resistivity tomography.
    Meng F; Wang J; Zhao Y
    J Hazard Mater; 2024 Oct; 478():135618. PubMed ID: 39181005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments.
    Deng Y; Shi X; Zhang Z; Sun Y; Wu J; Qian J
    J Contam Hydrol; 2020 Mar; 230():103603. PubMed ID: 31980237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.
    Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A
    J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of DNAPL waste in subsurface clayey lenses and layers.
    Ayral-Çınar D; Demond AH
    J Contam Hydrol; 2020 Feb; 229():103579. PubMed ID: 31818434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrostratigraphy and hydrogeophysical studies to delineate fresh and saline aquifer boundaries in Lesser Cholistan of Pakistan.
    Arif K; Khalid P
    PLoS One; 2023; 18(10):e0292035. PubMed ID: 37796956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer.
    Kamon M; Endo K; Kawabata J; Inui T; Katsumi T
    J Hazard Mater; 2004 Jul; 110(1-3):1-12. PubMed ID: 15177722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of creosote transport properties in sandy and clay soils.
    da Rocha Soares LC; Mendes GP; Viegas RMA; Barbosa AM; Yoshikawa NK; Nascimento CAOD
    Environ Monit Assess; 2023 Jul; 195(8):967. PubMed ID: 37464226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.
    Illman WA; Berg SJ; Liu X; Massi A
    Environ Sci Technol; 2010 Nov; 44(22):8609-14. PubMed ID: 20954708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidimensional Investigation of Bedrock Heterogeneity/Unconformities at a DNAPL-Impacted Site.
    Steelman CM; Meyer JR; Parker BL
    Ground Water; 2017 Jul; 55(4):532-549. PubMed ID: 28405963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphase flow and transport in fractured clay/sand sequences.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2001 Sep; 51(1-2):41-62. PubMed ID: 11530926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.
    Munholland JL; Mumford KG; Kueper BH
    J Contam Hydrol; 2016 Jan; 184():14-24. PubMed ID: 26638038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineation of LNAPL plumes in a clay-rich site in Gyeongsangnam-do Province, South Korea: integration of geophysical survey data with borehole data and soil sampling information.
    Kim B; Joung IS; Yu H; Jeong J; Song SY; Son JS; Yu Y; Shin J; Jo HY; Kwon MJ; Nam MJ
    Environ Monit Assess; 2023 Dec; 196(1):47. PubMed ID: 38105289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.