These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37683396)

  • 21. SAR observation and model tracking of an oil spill event in coastal waters.
    Cheng Y; Li X; Xu Q; Garcia-Pineda O; Andersen OB; Pichel WG
    Mar Pollut Bull; 2011 Feb; 62(2):350-63. PubMed ID: 21067783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches.
    Han Y; Clement TP
    PLoS One; 2018; 13(1):e0190508. PubMed ID: 29329313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near real time monitoring of platform sourced pollution using TerraSAR-X over the North Sea.
    Singha S; Velotto D; Lehner S
    Mar Pollut Bull; 2014 Sep; 86(1-2):379-390. PubMed ID: 25063509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multivariate curve resolution of organic pollution patterns in mangrove forest sediment from Qeshm Island and Khamir Port-Persian Gulf, Iran.
    Dadashi M; Ghaffari S; Bakhtiari AR; Tauler R
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):723-735. PubMed ID: 29063394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oil spills in the Barents Sea: The results of multiyear monitoring with synthetic aperture radar.
    Ivanov AY; Kucheiko AY; Ivonin DV; Filimonova NA; Terleeva NV; Evtushenko NV
    Mar Pollut Bull; 2022 Jun; 179():113677. PubMed ID: 35512519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors.
    Arslan N
    Environ Monit Assess; 2018 Oct; 190(11):637. PubMed ID: 30338396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of machine learning techniques to select marine oil spill response methods under small-sized dataset conditions.
    Mohammadiun S; Hu G; Gharahbagh AA; Li J; Hewage K; Sadiq R
    J Hazard Mater; 2022 Aug; 436():129282. PubMed ID: 35739791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response planning for accidental oil spills in Persian Gulf: A decision support system (DSS) based on consequence modeling.
    Amir-Heidari P; Raie M
    Mar Pollut Bull; 2019 Mar; 140():116-128. PubMed ID: 30803625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terrestrial oil spill mapping using satellite earth observation and machine learning: A case study in South Sudan.
    Löw F; Stieglitz K; Diemar O
    J Environ Manage; 2021 Nov; 298():113424. PubMed ID: 34358936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.
    Ramsey E; Meyer BM; Rangoonwala A; Overton E; Jones CE; Bannister T
    Mar Pollut Bull; 2014 Dec; 89(1-2):85-95. PubMed ID: 25455375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar.
    Singha S; Ressel R
    Mar Pollut Bull; 2016 Nov; 112(1-2):327-340. PubMed ID: 27531143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Deep-Learning Framework for the Detection of Oil Spills from SAR Data.
    Shaban M; Salim R; Abu Khalifeh H; Khelifi A; Shalaby A; El-Mashad S; Mahmoud A; Ghazal M; El-Baz A
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A damage assessment model of oil spill accident combining historical data and satellite remote sensing information: a case study in Penglai 19-3 oil spill accident of China.
    Wei L; Hu Z; Dong L; Zhao W
    Mar Pollut Bull; 2015 Feb; 91(1):258-71. PubMed ID: 25530016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach.
    Trujillo-Acatitla R; Tuxpan-Vargas J; Ovando-Vázquez C
    Mar Pollut Bull; 2022 Nov; 184():114132. PubMed ID: 36174253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new stochastic oil spill risk assessment model for Persian Gulf: Development, application and evaluation.
    Amir-Heidari P; Raie M
    Mar Pollut Bull; 2019 Aug; 145():357-369. PubMed ID: 31590797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Dual Attention Encoding Network Using Gradient Profile Loss for Oil Spill Detection Based on SAR Images.
    Zhai J; Mu C; Hou Y; Wang J; Wang Y; Chi H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
    Xu Q; Li X; Wei Y; Tang Z; Cheng Y; Pichel WG
    Mar Pollut Bull; 2013 Jun; 71(1-2):107-16. PubMed ID: 23618498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between oil spill images and look-alikes: an evaluation of SAR-derived observations of the 2019 oil spill incident along Brazilian waters.
    Lentini CAD; Mendonça LFF; Conceição MRA; Lima ATC; Vasconcelos RN; Porsani MJ
    An Acad Bras Cienc; 2022; 94(suppl 2):e20211207. PubMed ID: 35730898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data.
    Marghany M
    Mar Pollut Bull; 2014 Dec; 89(1-2):20-29. PubMed ID: 25455367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models.
    Sannigrahi S; Basu B; Basu AS; Pilla F
    Mar Pollut Bull; 2022 May; 178():113527. PubMed ID: 35381459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.