BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37683459)

  • 1. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strangeness-driven exploration in multi-agent reinforcement learning.
    Kim JB; Choi HB; Han YH
    Neural Netw; 2024 Apr; 172():106149. PubMed ID: 38306786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.
    Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J
    Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An off-policy multi-agent stochastic policy gradient algorithm for cooperative continuous control.
    Guo D; Tang L; Zhang X; Liang YC
    Neural Netw; 2024 Feb; 170():610-621. PubMed ID: 38056408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Credit assignment with predictive contribution measurement in multi-agent reinforcement learning.
    Chen R; Tan Y
    Neural Netw; 2023 Jul; 164():681-690. PubMed ID: 37257392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Selection Method Using Multi-Agent Reinforcement Learning Based on Guide Agents.
    Kim M; Bae J; Wang B; Ko H; Lim JS
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning.
    Ye X; Deng Z; Shi Y; Shen W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feudal Latent Space Exploration for Coordinated Multi-Agent Reinforcement Learning.
    Liu X; Tan Y
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7775-7783. PubMed ID: 35167482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A target-driven visual navigation method based on intrinsic motivation exploration and space topological cognition.
    Ruan X; Li P; Zhu X; Liu P
    Sci Rep; 2022 Mar; 12(1):3462. PubMed ID: 35236878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Attention Master-Slave for heterogeneous multi-agent reinforcement learning.
    Wang J; Yuan M; Li Y; Zhao Z
    Neural Netw; 2023 May; 162():359-368. PubMed ID: 36940496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential.
    Zhang Z; Ong YS; Wang D; Xue B
    IEEE Trans Cybern; 2021 Feb; 51(2):1015-1027. PubMed ID: 31443061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluctuations of reinforcement learning promote cooperation.
    Barfuss W; Meylahn JM
    Sci Rep; 2023 Jan; 13(1):1309. PubMed ID: 36693872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Agent Reinforcement Learning for Joint Cooperative Spectrum Sensing and Channel Access in Cognitive UAV Networks.
    Jiang W; Yu W; Wang W; Huang T
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.