BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37683489)

  • 1. Identification of tea quality at different picking periods: A hyperspectral system coupled with a multibranch kernel attention network.
    Wang Y; Ren Y; Kang S; Yin C; Shi Y; Men H
    Food Chem; 2024 Feb; 433():137307. PubMed ID: 37683489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tea bud segmentation, detection and picking point localization based on the MDY7-3PTB model.
    Zhang F; Sun H; Xie S; Dong C; Li Y; Xu Y; Zhang Z; Chen F
    Front Plant Sci; 2023; 14():1199473. PubMed ID: 37841621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-kernel channel attention combined with convolutional neural network to identify spectral information for tracing the origins of rice samples.
    Wang B; Lu A; Yu L
    Anal Methods; 2023 Jan; 15(2):179-186. PubMed ID: 36515002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D-2D Multibranch Feature Fusion and Dense Attention Network for Hyperspectral Image Classification.
    Gao H; Zhang Y; Zhang Y; Chen Z; Li C; Zhou H
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging.
    Wang YJ; Li LQ; Shen SS; Liu Y; Ning JM; Zhang ZZ
    J Sci Food Agric; 2020 Aug; 100(10):3803-3811. PubMed ID: 32201954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network.
    Li M; Lu Y; Cao S; Wang X; Xie S
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on land use classification of hyperspectral images based on multiscale superpixels.
    Wang H; Li WW; Huang W; Niu JQ; Nie K
    Math Biosci Eng; 2020 Jul; 17(5):5099-5109. PubMed ID: 33120542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AUNet: a deep learning method for spectral information classification to identify inks.
    Shi Y; He X; Zhang Q; Yin C; Feng N; Chen H; Lin H
    Anal Methods; 2023 Mar; 15(13):1681-1689. PubMed ID: 36928514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and picking point positioning of tender tea shoots based on MR3P-TS model.
    Yan L; Wu K; Lin J; Xu X; Zhang J; Zhao X; Tayor J; Chen D
    Front Plant Sci; 2022; 13():962391. PubMed ID: 36035663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology.
    Tang T; Luo Q; Yang L; Gao C; Ling C; Wu W
    Foods; 2023 Dec; 13(1):. PubMed ID: 38201054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging.
    Dong C; Yang C; Liu Z; Zhang R; Yan P; An T; Zhao Y; Li Y
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging.
    Xin Z; Jun S; Xiaohong W; Bing L; Ning Y; Chunxia D
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():378-383. PubMed ID: 30157445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.
    Xie C; Li X; Shao Y; He Y
    PLoS One; 2014; 9(12):e113422. PubMed ID: 25546335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology.
    Ren G; Wang Y; Ning J; Zhang Z
    J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperspectral imaging-based cutaneous wound classification using neighbourhood extraction 3D convolutional neural network.
    Cihan M; Ceylan M
    Biomed Tech (Berl); 2023 Aug; 68(4):427-435. PubMed ID: 36862718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advance on application of hyperspectral imaging to nondestructive detection of agricultural products external quality].
    Li JB; Rao XQ; Ying YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2021-6. PubMed ID: 22007376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Category Tea Polyphenols Evaluation Model Based on Feature Fusion of Electronic Nose and Hyperspectral Imagery.
    Yang B; Qi L; Wang M; Hussain S; Wang H; Wang B; Ning J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality.
    Ren G; Wang Y; Ning J; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118407. PubMed ID: 32361218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peanut origin traceability: A hybrid neural network combining an electronic nose system and a hyperspectral system.
    Wang Z; Yu Y; Liu J; Zhang Q; Guo X; Yang Y; Shi Y
    Food Chem; 2024 Jul; 447():138915. PubMed ID: 38452539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous identification of the tea shoot tip and accurate positioning of picking points for a harvesting from standard plantations.
    Luo K; Zhang X; Cao C; Wu Z; Qin K; Wang C; Li W; Chen L; Chen W
    Front Plant Sci; 2023; 14():1211279. PubMed ID: 37885670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.