These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37683708)
1. Green solvents to enhance hydrochar quality and clarify effects of secondary char. Ischia G; Goldfarb JL; Miotello A; Fiori L Bioresour Technol; 2023 Nov; 388():129724. PubMed ID: 37683708 [TBL] [Abstract][Full Text] [Related]
2. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. Pecchi M; Baratieri M; Goldfarb JL; Maag AR Bioresour Technol; 2022 Mar; 348():126799. PubMed ID: 35122980 [TBL] [Abstract][Full Text] [Related]
3. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste. Pecchi M; Baratieri M; Maag AR; Goldfarb JL Waste Manag; 2023 Aug; 168():281-289. PubMed ID: 37329834 [TBL] [Abstract][Full Text] [Related]
4. Co-hydrothermal carbonization of microalgae and digested sewage sludge: Assessing the impact of mixing ratios on the composition of primary and secondary char. Benavente V; Pérez C; Jansson S Waste Manag; 2024 Feb; 174():429-438. PubMed ID: 38104415 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404 [TBL] [Abstract][Full Text] [Related]
6. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Nzediegwu C; Naeth MA; Chang SX Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274 [TBL] [Abstract][Full Text] [Related]
7. Remarkable Physical and Thermal Properties of Hydrothermal Carbonized Nanoscale Cellulose Observed from Citric Acid Catalysis and Acetone Rinsing. Faradilla RF; Lucia L; Hakovirta M Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486095 [TBL] [Abstract][Full Text] [Related]
8. The influence of biomass type on hydrothermal carbonization: Role of calcium oxalate in enhancing carbon sequestration of hydrochar. Luo X; Du H; Du J; Zhang X; Xiao W; Qin L J Environ Manage; 2024 Jan; 349():119586. PubMed ID: 37984272 [TBL] [Abstract][Full Text] [Related]
9. Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. Li Q; Lin H; Zhang S; Yuan X; Gholizadeh M; Wang Y; Xiang J; Hu S; Hu X Sci Total Environ; 2021 Oct; 791():148134. PubMed ID: 34118669 [TBL] [Abstract][Full Text] [Related]
10. Unveiling drastic influence of cross-interactions in hydrothermal carbonization of spirulina with cellulose, lignin or poplar on nature of hydrochar and activated carbon. Inkoua S; Li C; Rashid M; Naeem MM; Zhang S; Gao W; Gholizadeh M; Hu X J Environ Manage; 2024 Aug; 366():121713. PubMed ID: 38986368 [TBL] [Abstract][Full Text] [Related]
11. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784 [TBL] [Abstract][Full Text] [Related]
12. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Garlapalli RK; Wirth B; Reza MT Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477 [TBL] [Abstract][Full Text] [Related]
13. Cellulose Acetates in Hydrothermal Carbonization: A Green Pathway to Valorize Residual Bioplastics. Ischia G; Marchelli F; Bazzanella N; Ceccato R; Calvi M; Guella G; Gioia C; Fiori L ChemSusChem; 2024 Aug; ():e202401163. PubMed ID: 39140469 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal carbonization (HTC) of dairy waste: effect of temperature and initial acidity on the composition and quality of solid and liquid products. Khalaf N; Shi W; Fenton O; Kwapinski W; Leahy JJ Open Res Eur; 2022; 2():83. PubMed ID: 37645300 [No Abstract] [Full Text] [Related]
15. Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Zhao K; Li Y; Zhou Y; Guo W; Jiang H; Xu Q Bioresour Technol; 2018 Nov; 267():9-16. PubMed ID: 30005272 [TBL] [Abstract][Full Text] [Related]
16. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. Scrinzi D; Bona D; Denaro A; Silvestri S; Andreottola G; Fiori L J Environ Manage; 2022 May; 309():114688. PubMed ID: 35180435 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal carbonization of cow dung with human urine as a solvent for hydrochar: An experimental and kinetic study. Gajera ZR; Mungray AA; Rene ER; Mungray AK J Environ Manage; 2023 Feb; 327():116854. PubMed ID: 36455439 [TBL] [Abstract][Full Text] [Related]
18. Properties and degradability of hydrothermal carbonization products. Eibisch N; Helfrich M; Don A; Mikutta R; Kruse A; Ellerbrock R; Flessa H J Environ Qual; 2013 Sep; 42(5):1565-73. PubMed ID: 24216434 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Cui X; Lu M; Khan MB; Lai C; Yang X; He Z; Chen G; Yan B Waste Manag; 2020 Feb; 102():106-113. PubMed ID: 31670228 [TBL] [Abstract][Full Text] [Related]
20. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Khoshbouy R; Takahashi F; Yoshikawa K Environ Res; 2019 Aug; 175():457-467. PubMed ID: 31158564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]