These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37683810)

  • 21. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround.
    Lakunina AA; Nardoci MB; Ahmadian Y; Jaramillo S
    J Neurosci; 2020 Apr; 40(18):3564-3575. PubMed ID: 32220950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (
    Johnson LA; Della Santina CC; Wang X
    J Neurosci; 2017 Jul; 37(29):7008-7022. PubMed ID: 28634306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex.
    Szymanski FD; Rabinowitz NC; Magri C; Panzeri S; Schnupp JW
    J Neurosci; 2011 Nov; 31(44):15787-801. PubMed ID: 22049422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral resolution of monkey primary auditory cortex (A1) revealed with two-noise masking.
    Fishman YI; Steinschneider M
    J Neurophysiol; 2006 Sep; 96(3):1105-15. PubMed ID: 16738218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical evoked potentials to an auditory illusion: binaural beats.
    Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N
    Clin Neurophysiol; 2009 Aug; 120(8):1514-24. PubMed ID: 19616993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
    Kajikawa Y; Smiley JF; Schroeder CE
    J Neurosci; 2017 Oct; 37(42):10139-10153. PubMed ID: 28924008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.
    Noto M; Nishikawa J; Tateno T
    Neuroscience; 2016 Mar; 318():58-83. PubMed ID: 26772432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials.
    Goldwyn JH; McLaughlin M; Verschooten E; Joris PX; Rinzel J
    J Neurosci; 2017 Oct; 37(43):10451-10467. PubMed ID: 28947575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation.
    Natan RG; Rao W; Geffen MN
    Cell Rep; 2017 Oct; 21(4):878-890. PubMed ID: 29069595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.
    Morrill RJ; Hasenstaub AR
    J Neurosci; 2018 Mar; 38(11):2854-2862. PubMed ID: 29440554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. State-dependent and cell type-specific temporal processing in auditory thalamocortical circuit.
    Sakata S
    Sci Rep; 2016 Jan; 6():18873. PubMed ID: 26728584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive coding and pitch processing in the auditory cortex.
    Kumar S; Sedley W; Nourski KV; Kawasaki H; Oya H; Patterson RD; Howard MA; Friston KJ; Griffiths TD
    J Cogn Neurosci; 2011 Oct; 23(10):3084-94. PubMed ID: 21452943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MEG in the macaque monkey and human: distinguishing cortical fields in space and time.
    Zumer JM; Nagarajan SS; Krubitzer LA; Zhu Z; Turner RS; Disbrow EA
    Brain Res; 2010 Jul; 1345():110-24. PubMed ID: 20493828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.
    Trainor LJ; Marie C; Bruce IC; Bidelman GM
    Hear Res; 2014 Feb; 308():60-70. PubMed ID: 23916754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How local is the local field potential?
    Kajikawa Y; Schroeder CE
    Neuron; 2011 Dec; 72(5):847-58. PubMed ID: 22153379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography.
    Ohl FW; Schulze H; Scheich H; Freeman WJ
    J Physiol Paris; 2000; 94(5-6):549-54. PubMed ID: 11165919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex.
    Edeline JM; Hars B; Maho C; Hennevin E
    Exp Brain Res; 1994; 97(3):373-86. PubMed ID: 8187850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bidirectional Shifting Effects of the Sound Intensity on the Best Frequency in the Rat Auditory Cortex.
    Tao C; Zhang G; Zhou C; Wang L; Yan S; Zhou Y; Xiong Y
    Sci Rep; 2017 Mar; 7():44493. PubMed ID: 28290533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.