BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37683963)

  • 21. Residual voltage as an ad-hoc indicator of electrode damage in biphasic electrical stimulation.
    Krishnan A; Forssell M; Du Z; Cui XT; Fedder GK; Kelly SK
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34400592
    [No Abstract]   [Full Text] [Related]  

  • 22. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications.
    Zhang C; Driver N; Tian Q; Jiang W; Liu H
    J Biomed Mater Res A; 2018 Jul; 106(7):1887-1895. PubMed ID: 29520971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and evaluation of conductive elastomer electrodes for neural stimulation.
    Keohan F; Wei XF; Wongsarnpigoon A; Lazaro E; Darga JE; Grill WM
    J Biomater Sci Polym Ed; 2007; 18(8):1057-73. PubMed ID: 17705998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Platinum dissolution and tissue response following long-term electrical stimulation at high charge densities.
    Shepherd RK; Carter PM; Dalrymple AN; Enke YL; Wise AK; Nguyen T; Firth J; Thompson A; Fallon JB
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33578409
    [No Abstract]   [Full Text] [Related]  

  • 26. Dimensional scaling of thin-film stimulation electrode systems in translational research.
    Schiavone G; Vachicouras N; Vyza Y; Lacour SP
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831857
    [No Abstract]   [Full Text] [Related]  

  • 27. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long term performance of porous platinum coated neural electrodes.
    Leber M; Bhandari R; Mize J; Warren DJ; Shandhi MMH; Solzbacher F; Negi S
    Biomed Microdevices; 2017 Sep; 19(3):62. PubMed ID: 28688070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced electrochemical potential monitoring for improved understanding of electrical neurostimulation protocols.
    Doering M; Kieninger J; Kübler J; Hofmann UG; Rupitsch SJ; Urban GA; Weltin A
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37307808
    [No Abstract]   [Full Text] [Related]  

  • 30. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Cui XT; Zhou DD
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):502-8. PubMed ID: 18198707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology?
    Shah DD; Carter P; Shivdasani MN; Fong N; Duan W; Esrafilzadeh D; Poole-Warren LA; Aregueta Robles UA
    Biomaterials; 2024 Sep; 309():122575. PubMed ID: 38677220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo.
    Shepherd RK; Carter PM; Enke YL; Wise AK; Fallon JB
    J Neural Eng; 2019 Apr; 16(2):026009. PubMed ID: 30523828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
    Kolarcik CL; Catt K; Rost E; Albrecht IN; Bourbeau D; Du Z; Kozai TD; Luo X; Weber DJ; Cui XT
    J Neural Eng; 2015 Feb; 12(1):016008. PubMed ID: 25485675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocompatibility considerations at stimulating electrode interfaces.
    Beard RB; Hung BN; Schmukler R
    Ann Biomed Eng; 1992; 20(3):395-410. PubMed ID: 1443832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control.
    Iredale E; Voigt B; Rankin A; Kim KW; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2022 Sep; 49(9):6055-6067. PubMed ID: 35754362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina.
    Carnicer-Lombarte A; Lancashire HT; Vanhoestenberghe A
    J Neural Eng; 2017 Jun; 14(3):036012. PubMed ID: 28272027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.