BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37684230)

  • 21. Genome rearrangements associated with aberrant telomere maintenance.
    Bhargava R; Fischer M; O'Sullivan RJ
    Curr Opin Genet Dev; 2020 Feb; 60():31-40. PubMed ID: 32145504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genomic dynamics during progression of lung adenocarcinomas.
    Yang B; Luo L; Luo W; Zhou Y; Yang C; Xiong T; Li X; Meng X; Li L; Zhang X; Wang Z; Wang Z
    J Hum Genet; 2017 Aug; 62(8):783-788. PubMed ID: 28381877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of a breakpoint cluster reveals insight into the mechanism of intrachromosomal amplification in a lymphoid malignancy.
    Sinclair PB; Parker H; An Q; Rand V; Ensor H; Harrison CJ; Strefford JC
    Hum Mol Genet; 2011 Jul; 20(13):2591-602. PubMed ID: 21487021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Next generation mapping reveals novel large genomic rearrangements in prostate cancer.
    Jaratlerdsiri W; Chan EKF; Petersen DC; Yang C; Croucher PI; Bornman MSR; Sheth P; Hayes VM
    Oncotarget; 2017 Apr; 8(14):23588-23602. PubMed ID: 28423598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving complex structural genomic rearrangements using a randomized approach.
    Zhao X; Emery SB; Myers B; Kidd JM; Mills RE
    Genome Biol; 2016 Jun; 17(1):126. PubMed ID: 27287201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of circular amplifications in Saccharomyces cerevisiae by a breakage-fusion-bridge mechanism.
    Moore IK; Martin MP; Dorsey MJ; Paquin CE
    Environ Mol Mutagen; 2000; 36(2):113-20. PubMed ID: 11013409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers.
    Tanaka H; Watanabe T
    Trends Cancer; 2020 Jun; 6(6):462-477. PubMed ID: 32383436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatid and chromosome type breakage-fusion-bridge cycles in wheat (Triticum aestivum L.).
    Lukaszewski AJ
    Genetics; 1995 Jul; 140(3):1069-85. PubMed ID: 7672578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of telomere dysfunction in genetic intratumor diversity.
    Genescà A; Pampalona J; Frías C; Domínguez D; Tusell L
    Adv Cancer Res; 2011; 112():11-41. PubMed ID: 21925300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alu-Alu fusion sequences identified at junction sites of copy number amplified regions in cancer cell lines.
    Kitada K; Aikawa S; Aida S
    Cytogenet Genome Res; 2013; 139(1):1-8. PubMed ID: 22986581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex repeat structure promotes hyper-amplification and amplicon evolution through rolling-circle replication.
    Watanabe T; Tanaka H; Horiuchi T
    Nucleic Acids Res; 2018 Jun; 46(10):5097-5108. PubMed ID: 29718479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstructing cancer genomes from paired-end sequencing data.
    Oesper L; Ritz A; Aerni SJ; Drebin R; Raphael BJ
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S10. PubMed ID: 22537039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.
    Croll D; Zala M; McDonald BA
    PLoS Genet; 2013 Jun; 9(6):e1003567. PubMed ID: 23785303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverted duplication pattern in anaphase bridges confirms the breakage-fusion-bridge (BFB) cycle model for 11q13 amplification.
    Reshmi SC; Roychoudhury S; Yu Z; Feingold E; Potter D; Saunders WS; Gollin SM
    Cytogenet Genome Res; 2007; 116(1-2):46-52. PubMed ID: 17268177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer.
    Colnaghi R; Carpenter G; Volker M; O'Driscoll M
    Semin Cell Dev Biol; 2011 Oct; 22(8):875-85. PubMed ID: 21802523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases.
    Greer SU; Nadauld LD; Lau BT; Chen J; Wood-Bouwens C; Ford JM; Kuo CJ; Ji HP
    Genome Med; 2017 Jun; 9(1):57. PubMed ID: 28629429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution.
    Bignell GR; Santarius T; Pole JC; Butler AP; Perry J; Pleasance E; Greenman C; Menzies A; Taylor S; Edkins S; Campbell P; Quail M; Plumb B; Matthews L; McLay K; Edwards PA; Rogers J; Wooster R; Futreal PA; Stratton MR
    Genome Res; 2007 Sep; 17(9):1296-303. PubMed ID: 17675364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.