These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37684259)

  • 1. Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models.
    Xia K; Chen D; Jin S; Yi X; Luo L
    Sci Rep; 2023 Sep; 13(1):14827. PubMed ID: 37684259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis.
    Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y
    Front Oncol; 2022; 12():967758. PubMed ID: 36072795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study.
    Zeng J; Li K; Cao F; Zheng Y
    Front Oncol; 2023; 13():1131859. PubMed ID: 36959782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of machine learning prognostic models for overall survival of prostate cancer patients with lymph node-positive.
    Peng ZH; Tian JH; Chen BH; Zhou HB; Bi H; He MX; Li MR; Zheng XY; Wang YW; Chong T; Li ZL
    Sci Rep; 2023 Oct; 13(1):18424. PubMed ID: 37891423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database.
    Sun H; Wu S; Li S; Jiang X
    Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting overall survival in chordoma patients using machine learning models: a web-app application.
    Cheng P; Xie X; Knoedler S; Mi B; Liu G
    J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database.
    Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R
    Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma.
    Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X
    Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning.
    Luo L; Lin H; Huang J; Lin B; Huang F; Luo H
    Clin Exp Med; 2023 Sep; 23(5):1609-1620. PubMed ID: 35821159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT.
    Huang B; Sollee J; Luo YH; Reddy A; Zhong Z; Wu J; Mammarappallil J; Healey T; Cheng G; Azzoli C; Korogodsky D; Zhang P; Feng X; Li J; Yang L; Jiao Z; Bai HX
    EBioMedicine; 2022 Aug; 82():104127. PubMed ID: 35810561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model.
    Kim Y; Kim KH; Park J; Yoon HI; Sung W
    Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a web-based calculator to predict three-month mortality among patients with bone metastases from cancer of unknown primary: An internally and externally validated study using machine-learning techniques.
    Cui Y; Wang Q; Shi X; Ye Q; Lei M; Wang B
    Front Oncol; 2022; 12():1095059. PubMed ID: 36568149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort.
    Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based prediction of 1-year mortality for acute coronary syndrome
    Hadanny A; Shouval R; Wu J; Gale CP; Unger R; Zahger D; Gottlieb S; Matetzky S; Goldenberg I; Beigel R; Iakobishvili Z
    J Cardiol; 2022 Mar; 79(3):342-351. PubMed ID: 34857429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of an ensemble machine-learning model for predicting early mortality among patients with bone metastases of hepatocellular carcinoma.
    Long Z; Yi M; Qin Y; Ye Q; Che X; Wang S; Lei M
    Front Oncol; 2023; 13():1144039. PubMed ID: 36890826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Prognostic Model for Patients After Lung Transplantation.
    Tian D; Yan HJ; Huang H; Zuo YJ; Liu MZ; Zhao J; Wu B; Shi LZ; Chen JY
    JAMA Netw Open; 2023 May; 6(5):e2312022. PubMed ID: 37145595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.